【問題情境】
課外興趣小組活動時,老師提出了如下問題:如圖1,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,連接BE.請根據(jù)小明的方法思考:

(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 BB.
A.SSS
B.SAS
C.AAS
D.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是 2<AD<102<AD<10.
解后反思:題目中出現(xiàn)“中點”“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.
【初步運用】
如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
【靈活運用】
如圖3,在△ABC中,∠A=90°,D為BC中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF,試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.
【考點】三角形綜合題.
【答案】B;2<AD<10
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:283引用:4難度:0.2
相似題
-
1.已知在平面直角坐標(biāo)系中,點A(a,b)滿足
=0,AB⊥x軸于點B.12a-3+(2-b)2
(1)點A的坐標(biāo)為,點B的坐標(biāo)為;
(2)如圖1,若點M在x軸上,連接MA,使S△ABM=2,求出點M的坐標(biāo);
(3)如圖2,P是線段AB所在直線上一動點,連接OP,OE平分∠PON,交直線AB于點E,作OF⊥OE,當(dāng)點P在直線AB上運動過程中,請?zhí)骄俊螼PE與∠FOP的數(shù)量關(guān)系,并證明.發(fā)布:2025/6/7 7:0:1組卷:642引用:7難度:0.3 -
2.探究
(1)【問題初探】
如圖1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一點,且DE=CE,連接BD.直接寫出BD與AC的位置關(guān)系和數(shù)量關(guān)系:;
(2)【問題改編】
如圖2,在△ABE和△CDE中,∠AEB=∠CED=90°,AE=BE,DE=CE,連接BD,AC.求證:BD⊥AC;
(3)【問題拓展】
如圖3,將(2)中的“90°”改為“60°”,(2)中的其他條件不變,若BD與AC交于點F,求∠DFC的度數(shù).發(fā)布:2025/6/7 9:0:2組卷:32引用:2難度:0.2 -
3.如圖,以直角三角形AOC的直角頂點O為原點,以O(shè)C,OA所在直線為軸和軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足
+|b-8|=0.a-6
(1)a=;b=.
(2)已知坐標(biāo)軸上有兩動點P,Q同時出發(fā),P點從C點出發(fā)以每秒2個單位長度的速度向點O勻速移動,Q點從O點出發(fā)以每秒1個單位長度的速度向點A勻速移動,點P到達O點整個運動隨之結(jié)束.AC的中點D的坐標(biāo)是(4,3),設(shè)運動時間為t秒.
問:是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請求出t的值;若不存在,請說明理由.
(3)在(2)的條件下,若∠DOC=∠DCO,點G是第二象限中一點,并且y軸平分∠GOD.點E是線段OA上一動點,連接CE交OD于點H,當(dāng)點E在線段OA上運動的過程中,探究∠GOD,∠OHC,∠ACE之間的數(shù)量關(guān)系,并證明你的結(jié)論.發(fā)布:2025/6/7 7:30:1組卷:146引用:1難度:0.1