閱讀理解和問題解決
(1)如圖1,在△ABC中,若AB=10,AC=6.求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點(diǎn)E,使得AD=DE,再連接BE.此時(shí)構(gòu)造出一對(duì)全等的三角形為:△ADC△ADC≌△EDB△EDB,全等的依據(jù)為 SASSAS,于是可推得AD=EDED,AC=EBEB,這樣就把AB,AC,2AD集中在△ABE中,利用三角形三邊關(guān)系即可判斷中線AD的取值范圍是 2<AD<82<AD<8;
(2)如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,請(qǐng)你參考問題(1)的解答思路求證:BE+CF>EF.
【考點(diǎn)】全等三角形的判定與性質(zhì);三角形三邊關(guān)系.
【答案】△ADC;△EDB;SAS;ED;EB;2<AD<8
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/16 13:0:1組卷:328引用:5難度:0.5
相似題
-
1.如圖,D、E、F、B在一條直線上,AB=CD,∠B=∠D,BF=DE,求證:AE∥CF.
發(fā)布:2025/6/10 19:30:2組卷:652引用:5難度:0.5 -
2.在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是 ;
(2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P是線段CB延長線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.發(fā)布:2025/6/10 19:30:2組卷:3642引用:89難度:0.5 -
3.如圖,△ABC和△BDE都是等邊三角形,A、B、D三點(diǎn)共線.
下列結(jié)論:①AE=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等邊三角形.其中正確的有(只填序號(hào)).發(fā)布:2025/6/10 19:30:2組卷:301引用:4難度:0.5