2022年山東省日照二中中考數(shù)學(xué)二模試卷
發(fā)布:2024/12/14 7:30:2
一、選擇題(共12小題,每小題3分,滿(mǎn)分36分)
-
1.袁隆平院士被譽(yù)為“雜交水稻之父”,經(jīng)過(guò)他帶領(lǐng)的團(tuán)隊(duì)多年艱苦努力,目前我國(guó)雜交水稻種植面積達(dá)2.4億畝,每年增產(chǎn)的糧食可以養(yǎng)活8000萬(wàn)人,將數(shù)據(jù)8000萬(wàn)用科學(xué)記數(shù)法表示為8×10n,則n的值為( ?。?/h2>
組卷:104引用:4難度:0.8 -
2.三個(gè)大小一樣的正方體按如圖方式擺放,它的主視圖是( ?。?/h2>
組卷:155引用:3難度:0.8 -
3.手機(jī)已逐漸成為人們?nèi)粘Mㄓ嵉闹饕ぞ?,其背后離不開(kāi)通訊運(yùn)營(yíng)商的市場(chǎng)支持,如圖展現(xiàn)的是我國(guó)四大通訊運(yùn)營(yíng)商的企業(yè)圖標(biāo),其中是軸對(duì)稱(chēng)圖形的是( )
組卷:188引用:15難度:0.8 -
4.設(shè)6-
的整數(shù)部分為a,小數(shù)部分為b,則(2a+10)b的值是( )10組卷:4708引用:35難度:0.8 -
5.定義新運(yùn)算:a※b=
,則函數(shù)y=3※x的圖象大致是( )a-1(a≤b)-ab(a>b且b≠0)組卷:1105引用:29難度:0.9 -
6.若x1,x2是x2+bx-3b=0的兩個(gè)根,且x12+x22=7,則b的值是( )
組卷:1717引用:4難度:0.5 -
7.若關(guān)于x的不等式組
的解集是x>1,關(guān)于y的分式方程x+1<3x+124x-1≥3(a-x)的解為非負(fù)數(shù),則所有符合條件的整數(shù)a的和為( ?。?/h2>ay-1=5y-8y-1-2組卷:156引用:3難度:0.6
三、解答題(共68分)
-
21.【問(wèn)題提出】
(1)如圖1,在矩形ABCD中,AD=10,AB=12,點(diǎn)E為AD的中點(diǎn),點(diǎn)P為矩形ABCD內(nèi)以BC為直徑的半圓上一點(diǎn),則PE的最小值為 ;
【問(wèn)題探究】
(2)如圖2,在△ABC中,AD為BC邊上的高,且AD=BC=4,點(diǎn)P為△ABC內(nèi)一點(diǎn),當(dāng)時(shí),求PB+PC的最小值;S△PBC=12S△ABC
【問(wèn)題解決】
(3)李伯伯家有一塊直角三角形菜園ABC,如圖3,米,∠C=90°,∠ABC=60°,李伯伯準(zhǔn)備在該三角形菜園內(nèi)取一點(diǎn)P,使得∠APB=120°,并在△ABP內(nèi)種植當(dāng)季蔬菜,邊BC的中點(diǎn)D為菜園出入口,為了種植方便,李伯伯打算在A(yíng)C邊上取點(diǎn)E,并沿PE、DE修兩條人行走道,為了節(jié)省時(shí)間,要求人行走道的總長(zhǎng)度(PE+DE)盡可能小,問(wèn)PE+DE的長(zhǎng)度是否存在最小值?若存在,求出其最小值;若不存在,請(qǐng)說(shuō)明理由.BC=2003組卷:355引用:4難度:0.3 -
22.在平面直角坐標(biāo)系中,拋物線(xiàn)y=
x2+bx+c經(jīng)過(guò)點(diǎn)A(-4,0),點(diǎn)M為拋物線(xiàn)的頂點(diǎn),點(diǎn)B在y軸上,直線(xiàn)AB與拋物線(xiàn)在第一象限交于點(diǎn)C(2,6),如圖12
(1)求拋物線(xiàn)的解析式;
(2)連接OC,若過(guò)點(diǎn)O的直線(xiàn)交線(xiàn)段AC于點(diǎn)P,將△MOC的面積分成1:2的兩部分,求點(diǎn)P的坐標(biāo);
(3)若Q是直線(xiàn)AC上方拋物線(xiàn)上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、C重合),當(dāng)△QAC的面積等于△AOC的面積時(shí),求出Q點(diǎn)坐標(biāo).
(4)在拋物線(xiàn)的對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)H,在拋物線(xiàn)上是否存在一點(diǎn)N,使以點(diǎn)A、H、C、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.組卷:241引用:3難度:0.1