試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2022-2023學(xué)年北京師大附中高三(上)月考數(shù)學(xué)試卷(10月份)

發(fā)布:2024/12/25 17:30:4

一、選擇題共10小題,每小題4分,共40分。在每小題列出的四個選項中,選出符合題目要求的一項。

  • 1.已知集合A={-1,1,2,4},B={x||x-1|≤1},則A∩B=( ?。?/h2>

    組卷:3818引用:32難度:0.9
  • 2.十七世紀(jì),數(shù)學(xué)家費馬提出猜想:“對任意正整數(shù)n>2,關(guān)于x,y,z的方程xn+yn=zn沒有正整數(shù)解”,經(jīng)歷三百多年,1995年數(shù)學(xué)家安德魯?懷爾斯給出了證明,使它終成費馬大定理,則費馬定理的否定為( ?。?/h2>

    組卷:191引用:16難度:0.9
  • 3.已知alog32=1,則2-a=( ?。?/h2>

    組卷:447引用:1難度:0.8
  • 4.設(shè)集合A={x|
    x
    -
    3
    x
    +
    1
    0
    },B={x|x+a≥0},若B?A,則a的取值范圍是( ?。?/h2>

    組卷:100引用:1難度:0.8
  • 5.下列函數(shù)中,在區(qū)間(1,2)單調(diào)遞減,且圖像關(guān)于點(1,0)中心對稱的是( ?。?/h2>

    組卷:39引用:1難度:0.7
  • 6.不等式|x-1|+lnx>0的解集是( ?。?/h2>

    組卷:14引用:1難度:0.7
  • 7.“0<x<2”是“|log2x|<1”成立的( ?。?/h2>

    組卷:44引用:1難度:0.7

三、解答題共6小題,共85分。解答應(yīng)寫出文字說明,演算步驟或證明過程。

  • 20.已知曲線y=ex在點A(t,et)處的切線l交y軸于點M.
    (Ⅰ)求l的方程;
    (Ⅱ)O為坐標(biāo)原點,設(shè)△AMO的面積為S,求S以t為自變量的函數(shù)解析式,寫出其定義域,并求S(t)的極大值點;
    (Ⅲ)設(shè)a<0,求S(t)在區(qū)間[a-1,a]上的最小值.

    組卷:62引用:1難度:0.4
  • 21.已知數(shù)列An:a1,a2,…,an(n∈N*,n≥2)滿足a1=an=0,且當(dāng)2≤k≤n(K∈N*)時,(ak-ak-12=1,令S(An)=
    n
    i
    =
    1
    a
    i

    (Ⅰ)寫出S(A5)的所有可能的值;
    (Ⅱ)求S(An)的最大值;
    (Ⅲ)是否存在數(shù)列An,使得S(An)=
    n
    -
    3
    2
    4
    ?若存在,求出數(shù)列An;若不存在,說明理由.

    組卷:63引用:5難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正