試卷征集
加入會員
操作視頻

如圖,△ABC中,AB=10cm,BC=6cm,AC=8cm,若動點P從點C開始,按C→A→B的路徑運動,且速度為每秒2cm,設出發(fā)的時間為t秒.
(1)請判斷△ABC的形狀,說明理由.
(2)當t為何值時,△BCP是以BC為腰的等腰三角形.
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒1cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.直接寫出t為何值時,P、Q兩點之間的距離為
10

【考點】三角形綜合題
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:286引用:3難度:0.4
相似題
  • 1.已知在△ABC中,AC=BC,∠BAC=60°,點P在△ABC外,連接BP、CP,且AB=BP.

    (1)如圖①,求證:BP=BC;
    (2)如圖②,作∠ABP的平分線交CP于點D,求∠BDC的度數(shù);
    (3)如圖③,在(2)的條件下,連接AP交BD于點E,在CP上取一點G,連接BG,若BG=8,BE=3,CD=2,求證:△BCD≌△BPG.

    發(fā)布:2025/5/31 14:30:1組卷:236引用:2難度:0.1
  • 2.(1)問題發(fā)現(xiàn):如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.試寫出線段DE,BD和CE之間的數(shù)量關系為

    (2)思考探究:如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D,A、E三點都在直線m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問(1)中結論還是否成立?若成立,請給出證明;若不成立,請說明理由.
    (3)拓展應用:如圖3,D、E是D、A、E三點所在直線m上的兩動點(D,A,E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀并說明理由.

    發(fā)布:2025/5/31 17:30:1組卷:538引用:11難度:0.3
  • 3.(1)閱讀理解:如圖1,在△ABC中,若AB=3,AC=5.求BC邊上的中線AD的取值范圍,小聰同學是這樣思考的:延長AD至E,使DE=AD,連接BE.利用全等將邊AC轉(zhuǎn)化到BE,在△BAE中利用三角形三邊關系即可求出中線AD的取值范圍,在這個過程中小聰同學證三角形全等用到的判定方法是
    ,中線AD的取值范圍是
    ;
    (2)問題解決:如圖2,在△ABC中,點D是BC的中點,DM⊥DN.DM交AB于點M,DN交AC于點N.求證:BM+CN>MN;
    (3)問題拓展:如圖3,在△ABC中,點D是BC的中點,分別以AB,AC為直角邊向△ABC外作Rt△ABM和Rt△ACN,其中∠BAM=∠NAC=90°,AB=AM,AC=AN,連接MN,請你探索AD與MN的數(shù)量與位置關系,并直接寫出AD與MN的關系.

    發(fā)布:2025/5/31 17:30:1組卷:357引用:20難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正