試卷征集
加入會(huì)員
操作視頻

若三個(gè)非零實(shí)數(shù)x,y,z中有一個(gè)數(shù)的平方等于另外兩個(gè)數(shù)的積,則稱三個(gè)實(shí)數(shù)x,y,z三構(gòu)成“星城三元數(shù)”.
(1)實(shí)數(shù)4,6,9可以構(gòu)成“星城三元數(shù)”嗎?請(qǐng)說明理由;
(2)若M1(t,y1),M2(t-1,y2),M3(t+1,y3)三點(diǎn)均在函數(shù)
y
=
k
x
(k為常數(shù)且k≠0)的圖象上且這三點(diǎn)的縱坐標(biāo)y1,y2,y3構(gòu)成“星城三元數(shù)”,求實(shí)數(shù)t的值;
(3)設(shè)非負(fù)實(shí)數(shù)x1,x2,x3是“星城三元數(shù)”且滿足x1<x3<x2,其中x1,x2是關(guān)于x的一元二次方程nx2+mx+n=0的兩個(gè)根,x3是二次函數(shù)y=ax2+bx+c(其中a>2b>3c)與x軸的一個(gè)交點(diǎn)的橫坐標(biāo),求點(diǎn)P(
c
a
b
a
)到原點(diǎn)的距離OP的取值范圍.

【考點(diǎn)】因式分解的應(yīng)用
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:452引用:1難度:0.2
相似題
  • 1.閱讀下列題目的解題過程:
    已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):
    ;
    (2)錯(cuò)誤的原因?yàn)椋?!--BA-->

    (3)本題正確的結(jié)論為:

    發(fā)布:2024/12/23 18:0:1組卷:2503引用:25難度:0.6
  • 2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>

    發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6
  • 3.閱讀理解:
    能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
    如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
    (1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
    (2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.

    發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正