課外興趣小組活動(dòng)時(shí),老師提出了下面問(wèn)題:
如圖①,AD是△ABC的中線,若AB=3,AC=5,求AD的取值范圍.
“善思小組”通過(guò)探究發(fā)現(xiàn),延長(zhǎng)AD至點(diǎn)E,使ED=AD,連接CE,可以證出△ADB≌△EDC,利用全等三角形的性質(zhì),可將已知的邊長(zhǎng)與AD轉(zhuǎn)化到△ACE中,進(jìn)而求出AD的取值范圍.
從上面的思路可以看出,解決問(wèn)題的關(guān)鍵是將中線AD延長(zhǎng)一倍,構(gòu)造出全等三角形,我們把這種方法叫做“倍長(zhǎng)中線法”.
請(qǐng)你利用“善思小組”的方法思考:
(1)由已知和作圖能得到△ADB≌△EDC的理由是 DD;
A.SSS
B.AAS
C.HL
D.SAS
(2)求得AD的取值范圍是 CC;
A.3<AD<5
B.3≤AD≤5
C.1<AD<4
D.1≤AD≤4
解題時(shí),條件中若出現(xiàn)“中點(diǎn)”或“中線”字樣,可以考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一三角形中.
根據(jù)上面解題方法的啟發(fā),請(qǐng)你解答問(wèn)題.
(3)如圖②,在△ABC中,AB>AC,點(diǎn)D,E在BC上,點(diǎn)E是CD的中點(diǎn),DF∥AB交AE于點(diǎn)F,DF=AC.
求證:AE平分∠BAC.

【考點(diǎn)】三角形綜合題.
【答案】D;C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/3 0:0:1組卷:239引用:1難度:0.5
相似題
-
1.如圖,將兩塊不同的等腰直角三角板OEF和三角板OCG放置在正方形ABCD中,直角頂點(diǎn)O重合,點(diǎn)E,F(xiàn),G分別在邊AB,BC,AD上,AB=10,GD=BF,若較小的斜邊EF長(zhǎng)為2
,則BE的長(zhǎng)為 ,較長(zhǎng)的斜邊CG長(zhǎng)為 .5發(fā)布:2025/6/12 6:30:2組卷:432引用:3難度:0.1 -
2.如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α.以O(shè)C為一邊作等邊三角形OCD,連接AD.
(1)求證:△BOC≌△ADC;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形?發(fā)布:2025/6/12 8:30:1組卷:172引用:6難度:0.4 -
3.【情境】某校數(shù)學(xué)興趣小組嘗試自制數(shù)學(xué)學(xué)具進(jìn)行自主合作探究.圖①是一塊邊長(zhǎng)為12cm的等邊三角形學(xué)具,P是邊AC上一個(gè)動(dòng)點(diǎn),由點(diǎn)A向點(diǎn)C運(yùn)動(dòng),速度為1cm/s,Q是邊CB延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由點(diǎn)B向CB延長(zhǎng)線方向運(yùn)動(dòng),連接PQ,交AB于點(diǎn)D,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
【問(wèn)題】(1)填空:CP+CQ=cm;
(2)當(dāng)∠DQB=30°時(shí),求t的值;
【探究】如圖②,過(guò)點(diǎn)P作PE⊥AB,垂足為E,在點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)過(guò)程中,線段DE的長(zhǎng)度是否發(fā)生變化?若不變,請(qǐng)求出DE的長(zhǎng)度;若變化,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/12 8:30:1組卷:867引用:4難度:0.2