數(shù)形結(jié)合是一種重要的數(shù)學(xué)思想方法.?dāng)?shù)學(xué)課上,老師準(zhǔn)備了三種紙片,如圖1中邊長分別為a、b的正方形紙片A、B,以及長為b、寬為a的長方形紙片C,觀察圖形并解答下列問題:
(1)小玲想用圖1的三種紙片拼出一個(gè)面積為(3a+b)(a+b)的大長方形,則需要A紙片 33張,B紙片 11張,C紙片 44張(空格處填寫數(shù)字);
(2)觀察圖2,請(qǐng)寫出下列三個(gè)代數(shù)式(b+a)2,(b-a)2,ab之間的等量關(guān)系; (b+a)2=(b-a)2+4ab(b+a)2=(b-a)2+4ab;
(3)運(yùn)用你所得的公式,計(jì)算:當(dāng)m-n=5,mn=-3,請(qǐng)求出m+n的值;
(4)現(xiàn)將一張A卡片放在B卡片的內(nèi)部得圖3,將一張A卡片和一張B卡片并列放置后構(gòu)造新的正方形得圖4.若圖3和圖4中陰影部分的面積分別為6和15,求圖4的邊長.
【答案】3;1;4;(b+a)2=(b-a)2+4ab
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:166引用:4難度:0.7
相似題
-
1.學(xué)習(xí)整式乘法時(shí),老師拿出三種型號(hào)卡片,如圖1.
(1)利用多項(xiàng)式與多項(xiàng)式相乘的法則,計(jì)算:(a+2b)(a+b)=;
(2)選取1張A型卡片,4張C型卡片,則應(yīng)取 張B型卡片才能用它們拼成一個(gè)新的正方形,此新的正方形的邊長是 (用含a,b的代數(shù)式表示);
(3)選取4張C型卡片在紙上按圖2的方式拼圖,并剪出中間正方形作為第四種D型卡片,由此可檢驗(yàn)的等量關(guān)系為 ;
(4)選取1張D型卡片,3張C型卡片按圖3的方式不重復(fù)的疊放長方形MNPQ框架內(nèi),已知NP的長度固定不變,MN的長度可以變化,且MN≠0.圖中兩陰影部分(長方形)的面積分別表示為S1,S2,若S1-S2=3b2,則a與b有什么關(guān)系?請(qǐng)說明理由.發(fā)布:2024/12/23 18:0:1組卷:3079引用:5難度:0.1 -
2.有兩個(gè)正方形A、B,現(xiàn)將B放在A的內(nèi)部得圖甲,將A、B并列放置后構(gòu)造新的正方形得圖乙.若圖甲和圖乙中陰影部分的面積分別為1和10,則正方形A,B的面積之和為.
發(fā)布:2024/12/23 18:0:1組卷:2223引用:16難度:0.8 -
3.如圖,兩個(gè)正方形邊長分別為a,b,如果a+b=10,ab=18,則陰影部分的面積為.
發(fā)布:2024/12/23 18:0:1組卷:1961引用:6難度:0.5
把好題分享給你的好友吧~~