已知:等邊三角形ABC的邊長為4厘米,長為1厘米的線段MN在△ABC的邊AB上沿AB方向以1厘米/秒的速度向B點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)開始時(shí),點(diǎn)M與點(diǎn)A重合,點(diǎn)N到達(dá)點(diǎn)B時(shí)運(yùn)動(dòng)終止),過點(diǎn)M、N分別作AB邊的垂線,與△ABC的其它邊交于P、Q兩點(diǎn),線段MN運(yùn)動(dòng)的時(shí)間為t秒.
(1)線段MN在運(yùn)動(dòng)的過程中,t為何值時(shí),四邊形MNQP恰為矩形并求出該矩形的面積;
(2)線段MN在運(yùn)動(dòng)的過程中,四邊形MNQP的面積為S,運(yùn)動(dòng)的時(shí)間為t,求四邊形MNQP的面積S隨運(yùn)動(dòng)時(shí)間t變化的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
【考點(diǎn)】一次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:986引用:24難度:0.1
相似題
-
1.在平面直角坐標(biāo)系中,BC∥OA,BC=3,OA=6,AB=3
5
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)已知D、E分別為線段OC、OB上的點(diǎn),OD=5,OE=2BE,直線DE交x軸于點(diǎn)F,求直線DE的解析式;
(3)在(2)的條件下,點(diǎn)M是直線DE上的一點(diǎn),在x軸上方是否存在另一個(gè)點(diǎn)N,使以O(shè)、D、M、N為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/23 0:0:1組卷:1249引用:3難度:0.1 -
2.已知:一次函數(shù)l1:y=
x+433和l2:y=-3x+63交于點(diǎn)A,它們分別與x軸交于B、C點(diǎn),l2交y軸于點(diǎn)H,∠ACB=60°.3
(1)如圖1:求△ABC的面積
(2)如圖2:CD為∠ACB的角平分線,M為OC中點(diǎn),N為線段CD上一動(dòng)點(diǎn),連接NO、NM,求NO+NM的最小值.
(3)如圖3:點(diǎn)P為y軸上一動(dòng)點(diǎn),連接BP;射線BP與直線CH交于點(diǎn)Q,當(dāng)△PQH為等腰三角形時(shí),求△PQH的面積.發(fā)布:2025/6/22 20:30:1組卷:107引用:1難度:0.1 -
3.如圖1,在平面直角坐標(biāo)系中,直線AC:y=-3x+3
與直線AB:y=ax+b交于點(diǎn)A,且B(-9,0).3
(1)若F是第二象限位于直線AB上方的一點(diǎn),過F作FE⊥AB于E,過F作FD∥y軸交直線AB于D,D為AB中點(diǎn),其中△DFF的周長是12+4,若M為線段AC上一動(dòng)點(diǎn),連接EM,求EM+3MC的最小值,此時(shí)y軸上有一個(gè)動(dòng)點(diǎn)G,當(dāng)|BG-MG|最大時(shí),求G點(diǎn)坐標(biāo);1010
(2)在(1)的情況下,將△AOC繞O點(diǎn)順時(shí)針旋轉(zhuǎn)60°后得到△A′OC',如圖2,將線段OA′沿著x軸平移,記平移過程中的線段OA′為O′A″,在平面直角坐標(biāo)系中是否存在點(diǎn)P,使得以點(diǎn)O′,A″,E,P為頂點(diǎn)的四邊形為菱形,若存在,請求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.發(fā)布:2025/6/22 20:30:1組卷:965引用:2難度:0.1