試求同時(shí)滿(mǎn)足下列兩個(gè)條件的一切有序正整數(shù)(a,b).
(1)7a-b2>0.
(2)ab2+b+7整除7a-b2,即7a-b2ab2+b+7.
7
a
-
b
2
a
b
2
+
b
+
7
【考點(diǎn)】因式分解的應(yīng)用.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/27 1:30:1組卷:261引用:1難度:0.3
相似題
-
1.已知a,b為直角三角形ABC的兩直角邊,△ABC的周長(zhǎng)為18,斜邊為8,面積為5.5,則代數(shù)式a2-ab+b2的值是( ?。?/h2>
發(fā)布:2025/6/6 5:0:1組卷:30引用:1難度:0.7 -
2.閱讀下列材料:
材料1:在處理分?jǐn)?shù)和分式問(wèn)題時(shí),有時(shí)由于分子比分母大,或者分子的次數(shù)高于分母的次數(shù),在實(shí)際運(yùn)算時(shí)往往難度比較大,這時(shí)我們可以將假分?jǐn)?shù)(分式)拆分成一個(gè)整數(shù)(整式)與一個(gè)真分?jǐn)?shù)(式)的和(差)的形式,通過(guò)對(duì)簡(jiǎn)單式的分析來(lái)解決問(wèn)題,我們稱(chēng)之為分離整數(shù)法.此法在處理分式或整除問(wèn)題時(shí)頗為有效.如將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.x2-3x-1x+2
解:設(shè)x+2=t,則x=t-2.∴原式=(t-2)2-3(t-2)-1t=t-7+t2-7t+9t9t
∴=x-5+x2-3x-1x+29x+2
材料2:配方法是初中數(shù)學(xué)思想方法中的一種重要的解題方法,配方法最終的目的就是配成完全平方式,利用完全平方式來(lái)求解,它的應(yīng)用非常廣泛,在解方程、求最值、證明等式、化簡(jiǎn)根式、因式分解等方面都經(jīng)常用到.如:當(dāng)a>0,b>0時(shí),∵+ab=(ba)2+(ab)2=(ba-ab)2+2ba
∴當(dāng)=ab,即a=b時(shí),ba+ab有最小值2.ba
根據(jù)以上閱讀材料回答下列問(wèn)題:
(1)將分式拆分成一個(gè)整式與一個(gè)分子為整數(shù)的分式的和的形式,則結(jié)果為 ;x2+x+3x+1
(2)已知分式的值為整數(shù),求整數(shù)x的值;4x2-10x+82x-1
(3)當(dāng)-1<x<1時(shí),求代數(shù)式的最大值及此時(shí)x的值.-12x4+14x2-5-2x2+2發(fā)布:2025/6/6 4:30:1組卷:387引用:4難度:0.4 -
3.三角形的三邊長(zhǎng)為(a+b)2=c2+2ab,則這個(gè)三角形是( ?。?/h2>
發(fā)布:2025/6/6 10:0:1組卷:43引用:2難度:0.7