如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C在坐標(biāo)軸上,且△ABC為等邊三角形,E為線段OC上一動(dòng)點(diǎn),如圖,在x軸下方作AP=AE,且∠EAP=60°,連接OP,BP.
(1)求證:△ACE≌△ABP;
(2)若點(diǎn)C坐標(biāo)為(0,33),求當(dāng)OE等于多少時(shí),點(diǎn)P在y軸上;
(3)若點(diǎn)A坐標(biāo)為(-3,0),請直接寫出在點(diǎn)E運(yùn)動(dòng)的過程中,OP的最小值.
(
0
,
3
3
)
【考點(diǎn)】三角形綜合題.
【答案】(1)見解析;
(2);
(3).
(2)
OE
=
3
(3)
3
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:322引用:5難度:0.1
相似題
-
1.線段和角是我們初中數(shù)學(xué)常見的平面幾何圖形,它們的表示方法、和差計(jì)算以及線段的中點(diǎn)、角的平分線的概念等有很多相似之處,所以研究線段或角的問題時(shí)可以運(yùn)用類比的方法.
(1)特例感知:
如圖1,已知AB=10cm,點(diǎn)D是線段AC的中點(diǎn),點(diǎn)E是線段BC的中點(diǎn).若BC=6cm,則線段DE=cm.
(2)數(shù)學(xué)思考:
如圖1,已知AB=10cm,若C是線段AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)D是線段AC的中點(diǎn),點(diǎn)E是線段BC的中點(diǎn),線段DE的長會(huì)發(fā)生變化嗎?說明理由.
(3)知識(shí)遷移:
如圖2,OB是∠AOC內(nèi)部的一條射線,把三角尺中60°角的頂點(diǎn)放在點(diǎn)O處,轉(zhuǎn)動(dòng)三角尺,當(dāng)三角尺的邊OD平分∠AOB時(shí),在角尺的另一邊OE與正好平分∠BOC,求∠AOC的度數(shù).發(fā)布:2025/6/5 16:30:2組卷:126引用:1難度:0.6 -
2.在平面直角坐標(biāo)系中,A(6,a),B(b,0),M(0,c),且
,P點(diǎn)為y軸上一動(dòng)點(diǎn).(b-2)2+|a-6|+c-6=0
(1)求點(diǎn)B、M的坐標(biāo);
(2)當(dāng)P點(diǎn)在線段OM上運(yùn)動(dòng)時(shí),試問是否存在一個(gè)點(diǎn)P使S△PAB=13,若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)不論點(diǎn)P點(diǎn)運(yùn)動(dòng)到直線OM上的任何位置(不包括點(diǎn)O,M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請寫出來并請選擇其中一種結(jié)論進(jìn)行證明;如果沒有,請說明理由.發(fā)布:2025/6/5 18:0:1組卷:35引用:3難度:0.1 -
3.在△ABC中,∠BAC=90°,
,D為BC上任意一點(diǎn),E為AC上任意一點(diǎn).AB=AC=22
(1)如圖1,連接DE,若∠CDE=60°,AC=4AE,求DE的長.
(2)如圖2,若點(diǎn)D為BC中點(diǎn),連接AD,點(diǎn)F為AD上任意一點(diǎn),連接EF并延長交AB于點(diǎn)M,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接AG.點(diǎn)N在AC上,∠AGN=∠AEG且,求證:GN=MF.AM+AF=2AE
(3)如圖3,點(diǎn)D為BC中點(diǎn),連接AD,點(diǎn)F為AD的中點(diǎn),連接EF、BF,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接AG,H為直線AB上一動(dòng)點(diǎn),連接FH,將△BFH沿FH翻折至△ABC所在平面內(nèi),得到△B′FH,連接B′G,直接寫出線段B′G的長度的最大值.發(fā)布:2025/6/5 18:0:1組卷:415引用:2難度:0.1