試卷征集
加入會員
操作視頻

正方形ABCD的邊長為2,將射線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CE⊥AM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對稱,連接CN.
(1)如圖,當(dāng)0°<α<45°時(shí),
①依題意補(bǔ)全圖.
②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:
∠NCE=2∠BAM
∠NCE=2∠BAM

(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明.
(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫出線段EF長的最大值.
菁優(yōu)網(wǎng)

【考點(diǎn)】四邊形綜合題
【答案】∠NCE=2∠BAM
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1255引用:10難度:0.1
相似題
  • 菁優(yōu)網(wǎng)1.如圖,四邊形ABCD中,AD=CD,AB=CB.我們把這種兩組鄰邊分別相等的凸四邊形叫做箏形.AC,BD叫做箏形的對角線.請你通過觀察、測量、折紙等方法進(jìn)行探究,并回答以下問題:
    (1)判斷下列結(jié)論是否正確;
    a.∠DAB=∠DCB;

    b.∠ABC=∠ADC;

    c.BD分別平分∠ABC和∠ADC

    d.箏形是軸對稱圖形,它有兩條對稱軸.

    (2)請你選擇下列問題中的一個(gè)進(jìn)行證明:
    a.從(1)中選擇一個(gè)正確的結(jié)論進(jìn)行證明;
    b.通過探究,再找到一條箏形的性質(zhì),并進(jìn)行證明.

    發(fā)布:2024/11/7 8:0:2組卷:108引用:2難度:0.3
  • 2.如果一個(gè)三角形和一個(gè)矩形滿足下列條件:三角形的一邊與矩形的一邊完全重合,并且三角形的這條邊所對的角的頂點(diǎn)落在矩形與三角形重合的邊的對邊上,則稱這樣的矩形為三角形的“友好矩形”.如圖①所示,矩形ABEF即為△ABC的“友好矩形”.我們發(fā)現(xiàn):當(dāng)△ABC是鈍角三角形時(shí),其“友好矩形”只有一個(gè).
    (1)仿照以上敘述,請你說明什么是一個(gè)三角形的“友好平行四邊形”;
    (2)如圖②,若△ABC為直角三角形,且∠C=90°,在圖②中畫出△ABC的所有“友好矩形”;
    (3)若△ABC是銳角三角形,且AB=5cm,AC=7cm,BC=8cm,在圖③中畫出△ABC的所有“友好矩形”,指出其中周長最大的矩形并說明理由.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/19 8:0:1組卷:134引用:1難度:0.5
  • 3.從圖1的風(fēng)箏圖形可以抽象出幾何圖形,我們把這種幾何圖形叫做“箏形”.具體定義如下:如圖2,在四邊形ABCD中,AB=AD,BC=DC,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”.
    菁優(yōu)網(wǎng)
    (1)結(jié)合圖3,通過觀察、測量,可以猜想“箏形”具有諸如“AC平分∠BAD和∠BCD”這樣的性質(zhì),請結(jié)合圖形,再寫出兩條“箏形”的性質(zhì):
    ;

    (2)從你寫出的兩條性質(zhì)中,任選一條“箏形”的性質(zhì)給出證明.

    發(fā)布:2024/11/7 8:0:2組卷:221引用:7難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正