如圖,點A(10,0),B(0,20),連接AB,動點M、N分別同時從點A,O出發(fā),以1單位長度/秒和2單位長度/秒的速度向終點O、B移動,當(dāng)其中一點到達終點時停止運動,移動時間為t秒.
(1)用含t的代數(shù)式表示點M的坐標(biāo)為(10-2t10-2t,00),點N的坐標(biāo)為(00,2t2t);
(2)當(dāng)四邊形AMNB的面積恰好為76時,求此時t的值;
(3)當(dāng)t為何值時,△MON與△AOB相似.
【考點】相似形綜合題.
【答案】10-2t;0;0;2t
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/26 15:0:9組卷:236引用:3難度:0.3
相似題
-
1.如圖,已知直線l1∥l2,線段AB在直線l1上,BC垂直于l1交l2于點C,且AB=BC,P是線段BC上異于兩端點的一點,過點P的直線分別交l2、l1于點D、E(點A、E位于點B的兩側(cè)),滿足BP=BE,連接AP、CE.
(1)求證:△ABP≌△CBE;
(2)連接AD、BD,BD與AP相交于點F.如圖2.
①當(dāng)=2時,求證:AP⊥BD;BCBP
②當(dāng)=n(n>1)時,設(shè)△PAD的面積為S1,△PCE的面積為S2,求BCBP的值.S1S2發(fā)布:2025/6/18 11:30:2組卷:1185引用:6難度:0.3 -
2.在矩形ABCD中,AD=3,CD=4,點E在邊CD上,且DE=1.
感知:如圖①,連接AE,過點E作EF⊥AE,交BC于點F,連接AF,易證:△ADE≌△ECF(不需要證明);
探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE∽△ECF;
應(yīng)用:如圖③,若EF交AB邊于點F,其他條件不變,且△PEF的面積是3,則AP的長為發(fā)布:2025/6/16 19:30:1組卷:681引用:3難度:0.1 -
3.已知,如圖①,在?ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿CB方向勻速移動,速度為1cm/s,當(dāng)△PNM停止平移時,點Q也停止移動,如圖②,設(shè)移動時間為t(s)(0<t<4),連接PQ,MQ,MC,解答下列問題:
(1)當(dāng)t為何值時,PQ∥MN?
(2)設(shè)△QMC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S△QMC:S四邊形ABQP=1:4?若存在,求出t的值;若不存在,請說明理由.
(4)是否存在某一時刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.發(fā)布:2025/6/21 4:30:1組卷:4338引用:9難度:0.5