在矩形ABCD中,AD=3,CD=4,點E在邊CD上,且DE=1.

感知:如圖①,連接AE,過點E作EF⊥AE,交BC于點F,連接AF,易證:△ADE≌△ECF(不需要證明);
探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE∽△ECF;
應用:如圖③,若EF交AB邊于點F,其他條件不變,且△PEF的面積是3,則AP的長為22.
【考點】相似形綜合題.
【答案】2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:680引用:3難度:0.1
相似題
-
1.如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°.
(1)如圖1,連結BE、CD,BE的延長線交AC于點F,交CD于點P,求證:
①△ABE≌△ACD;
②BP⊥CD;
(2)如圖2,把△ADE繞點A順時針旋轉,當點D落在AB上時,連結BE、CD,CD的延長線交BE于點P,若,BC=63,AD=3
①求證:△BDP∽△CDA;
②求△PDE的面積.發(fā)布:2025/5/25 12:0:2組卷:294引用:3難度:0.3 -
2.【基礎鞏固】
(1)如圖1,在△ABC中,D為AB上一點,∠ACD=∠B,求證:AC2=AD?AB.
【嘗試應用】
(2)如圖2,在平行四邊形ABCD中,E為BC上一點,F(xiàn)為CD延長線上一點,∠BFE=∠A.若BF=5,BE=3,求AD的長.
【拓展提高】
(3)如圖3,在菱形ABCD中,E是AB上一點,F(xiàn)是△ABC內一點,EF∥AC,AC=2EF,∠BAD=2∠EDF,AE=1,DF=4,求菱形ABCD的邊長(直接寫出答案).發(fā)布:2025/5/25 17:0:1組卷:480引用:4難度:0.3 -
3.問題提出
如圖(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,點E在△ABC內部,直線AD與BE交于點F.線段AF,BF,CF之間存在怎樣的數(shù)量關系?
問題探究
(1)先將問題特殊化如圖(2),當點D,F(xiàn)重合時,直接寫出一個等式,表示AF,BF,CF之間的數(shù)量關系;
(2)再探究一般情形如圖(1),當點D,F(xiàn)不重合時,證明(1)中的結論仍然成立.
問題拓展
如圖(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常數(shù)),點E在△ABC內部,直線AD與BE交于點F.直接寫出一個等式,表示線段AF,BF,CF之間的數(shù)量關系.發(fā)布:2025/5/25 17:30:1組卷:5696引用:14難度:0.6