試卷征集
加入會(huì)員
操作視頻

閱讀材料:若m2-2mn+2n2-4n+4=0,求m,n的值.
解:∵m2-2mn+2n2-4n+4=0,∴(m2-2mn+n2)+(n2-4n+4)=0,
∴(m-n)2+(n-2)2=0,∴(m-n)2=0,(n-2)2=0,∴n=2,m=2.
根據(jù)你的觀察,探究下面的問題:
(1)a2+b2+6a-2b+10=0,則a=
-3
-3
,b=
1
1

(2)已知x2+2y2-2xy+8y+16=0,求xy的值.
(3)已知△ABC的三邊長a、b、c都是正整數(shù),且滿足2a2+b2-4a-8b+18=0,求△ABC的周長.

【答案】-3;1
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:3218引用:15難度:0.5
相似題
  • 1.若實(shí)數(shù)x滿足x2-x-1=0,則代數(shù)式x3-2x2+2023的值為

    發(fā)布:2025/6/9 3:30:1組卷:527引用:6難度:0.6
  • 2.n為自然數(shù),若9n2+5n-26為兩個(gè)連續(xù)自然數(shù)之積,則n的值是

    發(fā)布:2025/6/9 19:0:2組卷:3068引用:5難度:0.2
  • 3.若一個(gè)四位數(shù)M的百位數(shù)字與千位數(shù)字的差恰好是個(gè)位數(shù)字與十位數(shù)字的差的2倍,則將這個(gè)四位數(shù)M稱作“星耀重外數(shù)”.
    例如:M=2456,∵4-2=2×(6-5),∴2456是“星耀重外數(shù)”;又如M=4325,∵3-4≠2×(5-2),∴4325不是“星耀重外數(shù)”.
    (1)判斷2023,5522是否是“星耀重外數(shù)”,并說明理由;
    (2)一個(gè)“星耀重外數(shù)”M的千位數(shù)字為a,百位數(shù)字為b,十位數(shù)字為c,個(gè)位數(shù)字為d,且滿足2≤a≤b<c≤d≤9,記
    G
    M
    =
    49
    ac
    -
    2
    a
    +
    2
    d
    +
    23
    b
    -
    6
    24
    ,當(dāng)G(M)是整數(shù)時(shí),求出所有滿足條件的M.

    發(fā)布:2025/6/9 16:0:2組卷:154引用:1難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正