綜合與實踐
問題情境:在Rt△ABC中,∠BAC=90°,AB=3,BC=5.點D在Rt△ABC斜邊BC上運動,過點D作射線DP⊥DQ,分別與邊AB,AC交于點P,Q.
猜想證明:
(1)當點D在Rt△ABC斜邊BC的中點處時,

①如圖(1),在∠PDQ旋轉過程中,當點DP⊥AB時,DQ與BP的數(shù)量關系是 DQ=BPDQ=BP,DQDP=3434;
②當∠PDQ旋轉到如圖②所示的位置時,DQDP的值是否發(fā)生變化?若不變,請證明;若變化,請說明理由;
③如圖③,在∠PDQ旋轉過程中,當AP=AQ時,直接寫出線段AQ的長 25142514;
類比探究
(2)當點D在Rt△ABC斜邊BC上運動時,
①如圖④,當點D運動到BD:BC=2:5時,DQDP=9898;
②如圖⑤,連接PQ,當△DPQ是等腰三角形時,求BD的長.
DQ
DP
3
4
3
4
DQ
DP
25
14
25
14
DQ
DP
9
8
9
8
【考點】相似形綜合題.
【答案】DQ=BP;;;
3
4
25
14
9
8
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/5 8:0:8組卷:25引用:2難度:0.5
相似題
-
1.已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.
問題發(fā)現(xiàn):
(1)①如圖1,若四邊形ABCD是正方形,且DE⊥CF于G,則=;DECF
②如圖2,當四邊形ABCD是矩形時,且DE⊥CF于G,AB=m,AD=n,則=;DECF
拓展研究:
(2)如圖3,若四邊形ABCD是平行四邊形,且∠B+∠EGC=180°時,求證:;DECF=ADCD
解決問題:
(3)如圖4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,請直接寫出的值.DECF發(fā)布:2025/5/23 23:30:1組卷:2292引用:6難度:0.3 -
2.[問題情境]
(1)王老師給愛好學習的小明和小穎提出這樣一個問題:如圖①,在△ABC中,AB=AC,P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小明的證明思路是:
如圖②,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小穎的證明思路是:
如圖②,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
請你選擇小明、小穎兩種證明思路中的任意一種,寫出詳細的證明過程.
[變式探究](2)如圖③,當點P在BC延長線上時,問題情境中,其余條件不變,求證:PD-PE=CF.
[結論運用](3)如圖④,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C'處,點P為折痕EF上的任一點,過點P作PG⊥BE,PH⊥BG,垂足分別為G,H,若AD=8,CF=3,求PG+PH的值.
[遷移拓展](4)圖⑤是一個機器模型的截面示意圖,在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D,C,且AD?CE=DE?BC,AB=2cm,AD=3cm,BD=13cm,MN分別為AE,BE的中點,連接DM,CN,請直接寫出△DEM與△CEN的周長之和.37發(fā)布:2025/5/24 0:30:1組卷:278引用:1難度:0.1 -
3.在矩形ABCD中,AB=2,AD=4,F(xiàn)是對角線AC上不與點A,C重合的一點,過F作FE⊥AD于E,將△AEF沿EF翻折得到△GEF,點G在射線AD上,連接CG.
(1)如圖1,若點A的對稱點G落在AD上,∠FGC=90°,延長GF交AB于H,連接CH.
①求證:△CDG∽△GAH;
②求tan∠GHC.
(2)如圖2,若點A的對稱點G落在AD延長線上,∠GCF=90°,判斷△GCF與△AEF是否全等,并說明理由.發(fā)布:2025/5/23 23:0:1組卷:1132引用:5難度:0.3