已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.
問題發(fā)現(xiàn):
(1)①如圖1,若四邊形ABCD是正方形,且DE⊥CF于G,則DECF=11;
②如圖2,當四邊形ABCD是矩形時,且DE⊥CF于G,AB=m,AD=n,則DECF=nmnm;
拓展研究:
(2)如圖3,若四邊形ABCD是平行四邊形,且∠B+∠EGC=180°時,求證:DECF=ADCD;
解決問題:
(3)如圖4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,請直接寫出DECF的值.

DE
CF
DE
CF
n
m
n
m
DE
CF
=
AD
CD
DE
CF
【考點】相似形綜合題.
【答案】1;
n
m
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/23 23:30:1組卷:2314引用:6難度:0.3
相似題
-
1.如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點D是線段AB上的一點,連接CD.過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連接DF,給出以下四個結論:①
=AGAB;②若點D是AB的中點,則AF=AFFCAB;③當B、C、F、D四點在同一個圓上時,DF=DB;④若23=DBAD,則S△ABC=9S△BDF,其中正確的結論序號是( ?。?/h2>12A.①② B.③④ C.①②③ D.①②③④ 發(fā)布:2025/6/24 16:30:1組卷:2783引用:11難度:0.2 -
2.如圖,矩形ABCD中,AB=20,BC=10,點P為AB邊上一動點,DP交AC于點Q.
(1)求證:△APQ∽△CDQ;
(2)P點從A點出發(fā)沿AB邊以每秒1個單位長度的速度向B點移動,移動時間為t秒.
①當t為何值時,DP⊥AC?
②設S△APQ+S△DCQ=y,寫出y與t之間的函數(shù)解析式,并探究P點運動到第幾秒到第幾秒之間時,y取得最小值.發(fā)布:2025/7/1 13:0:6組卷:2103引用:6難度:0.1 -
3.【探究發(fā)現(xiàn)】如圖1,△ABC是等邊三角形,∠AEF=60°,EF交等邊三角形外角平分線CF所在的直線于點F,當點E是BC的中點時,有AE=EF成立;
【數(shù)學思考】某數(shù)學興趣小組在探究AE、EF的關系時,運用“從特殊到一般”的數(shù)學思想,通過驗證得出如下結論:
當點E是直線BC上(B,C除外)任意一點時(其它條件不變),結論AE=EF仍然成立.
假如你是該興趣小組中的一員,請你從“點E是線段BC上的任意一點”;“點E是線段BC延長線上的任意一點”;“點E是線段BC反向延長線上的任意一點”三種情況中,任選一種情況,在備用圖1中畫出圖形,并證明AE=EF.
【拓展應用】當點E在線段BC的延長線上時,若CE=BC,在備用圖2中畫出圖形,并運用上述結論求出S△ABC:S△AEF的值.發(fā)布:2025/6/24 15:30:2組卷:1873引用:6難度:0.1