圖1是由若干個(gè)小圓圈堆成的一個(gè)形如正三角形的圖案,最上面-層有一個(gè)圓圈,以下各層均比上-層多一個(gè)圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個(gè)數(shù)為1+2+3+…+n=n(n+1)2.

如果圖1中的圓圈共有12層,
(1)我們自上往下,在每個(gè)圓圈中都按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,…,則最底層最左邊這個(gè)圓圈中的數(shù)是6767;
(2)我們自上往下,在每個(gè)圓圈中都按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,…,求圖4中所有圓圈中各數(shù)的絕對值之和.
n
(
n
+
1
)
2
【考點(diǎn)】規(guī)律型:數(shù)字的變化類.
【答案】67
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:940引用:61難度:0.3
相似題
-
1.(1)計(jì)算:1-2+3-4+5-6…+99-100;
(2)計(jì)算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.發(fā)布:2025/6/25 7:30:2組卷:46引用:1難度:0.6 -
2.在求1+2+22+23+24+25+26的值時(shí),小明發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.發(fā)布:2025/6/25 7:30:2組卷:106引用:2難度:0.3 -
3.下列排列的每一列數(shù),研究它的排列有什么規(guī)律?并填出空格上的數(shù).
(1)1,-2,1,-2,1,-2,,,,…
(2)-2,4,-6,8,-10,,,…
(3)1,0,-1,1,0,-1,,,.發(fā)布:2025/6/25 7:30:2組卷:49引用:2難度:0.3