[實(shí)際問題]
某商場在“十一國慶”期間為了鼓勵(lì)消費(fèi),設(shè)計(jì)了抽獎(jiǎng)活動(dòng),方案如下:根據(jù)不同的消費(fèi)金額,每次抽獎(jiǎng)時(shí)可以從100張面值分別為1元、2元、3元、……、100元的獎(jiǎng)券中(面值為整數(shù)),一次任意抽取2張、3張、4張、……等若干張獎(jiǎng)券,獎(jiǎng)券的面值金額之和即為優(yōu)惠金額.某顧客獲得了一次抽取5張獎(jiǎng)券的機(jī)會(huì),小明想知道該顧客共有多少種不同的優(yōu)惠金額?
[問題建模]
從1,2,3,……,n(n為整數(shù),且n≥6)這n個(gè)整數(shù)中任取5個(gè)整數(shù),這5個(gè)整數(shù)之和共有多少種不同的結(jié)果?
[模型探究]
我們采取一般問題特殊化的策略,先從最簡單的情形入手,從中找出解決問題的方法.從1,2,3這3個(gè)整數(shù)中任取2個(gè)整數(shù),這2個(gè)整數(shù)之和共有多少種不同的結(jié)果?
所取的2個(gè)整數(shù) | 1,2 | 1,3 | 2,3 |
2個(gè)整數(shù)之和 | 3 | 4 | 5 |
(1)從1,2,3,4,5這5個(gè)整數(shù)中任取2個(gè)整數(shù),這2個(gè)整數(shù)之和共有
7
7
種不同的結(jié)果.(2)從1,2,3,……,n(n為整數(shù),且n≥6)這n個(gè)整數(shù)中任取3個(gè)整數(shù),這3個(gè)整數(shù)之和共有
(3n-8)
(3n-8)
種不同的結(jié)果.(3)歸納結(jié)論:從1,2,3,……,n(n為整數(shù),且n≥6)這n個(gè)整數(shù)中任取5個(gè)整數(shù),這5個(gè)整數(shù)之和共有
(5n-24)
(5n-24)
種不同的結(jié)果.[問題解決]
從100張面值分別為1元、2元、3元、……、100元的獎(jiǎng)券中(面值為整數(shù)),一次任意抽取5張獎(jiǎng)券,共有
476
476
種不同的優(yōu)惠金額.[問題拓展]
從3,4,5,……,n(n為整數(shù),且n≥6)這n-2個(gè)整數(shù)中任取5個(gè)整數(shù),使得取出的這些整數(shù)之和共有121種不同的結(jié)果,求n的值.(寫出解答過程)
【考點(diǎn)】規(guī)律型:數(shù)字的變化類;有理數(shù)大小比較.
【答案】7;(3n-8);(5n-24);476
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/1 12:0:1組卷:546引用:4難度:0.3
相似題
-
1.在求1+2+22+23+24+25+26的值時(shí),小明發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.發(fā)布:2025/6/25 7:30:2組卷:106引用:2難度:0.3 -
2.下列排列的每一列數(shù),研究它的排列有什么規(guī)律?并填出空格上的數(shù).
(1)1,-2,1,-2,1,-2,,,,…
(2)-2,4,-6,8,-10,,,…
(3)1,0,-1,1,0,-1,,,.發(fā)布:2025/6/25 7:30:2組卷:49引用:2難度:0.3 -
3.(1)計(jì)算:1-2+3-4+5-6…+99-100;
(2)計(jì)算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.發(fā)布:2025/6/25 7:30:2組卷:45引用:1難度:0.6