[實(shí)際問題]
某商場在“十一國慶”期間為了鼓勵(lì)消費(fèi),設(shè)計(jì)了抽獎(jiǎng)活動(dòng),方案如下:根據(jù)不同的消費(fèi)金額,每次抽獎(jiǎng)時(shí)可以從100張面值分別為1元、2元、3元、……、100元的獎(jiǎng)券中(面值為整數(shù)),一次任意抽取2張、3張、4張、……等若干張獎(jiǎng)券,獎(jiǎng)券的面值金額之和即為優(yōu)惠金額.某顧客獲得了一次抽取5張獎(jiǎng)券的機(jī)會(huì),小明想知道該顧客共有多少種不同的優(yōu)惠金額?
[問題建模]
從1,2,3,……,n(n為整數(shù),且n≥6)這n個(gè)整數(shù)中任取5個(gè)整數(shù),這5個(gè)整數(shù)之和共有多少種不同的結(jié)果?
[模型探究]
我們采取一般問題特殊化的策略,先從最簡單的情形入手,從中找出解決問題的方法.從1,2,3這3個(gè)整數(shù)中任取2個(gè)整數(shù),這2個(gè)整數(shù)之和共有多少種不同的結(jié)果?
所取的2個(gè)整數(shù) |
1,2 |
1,3 |
2,3 |
2個(gè)整數(shù)之和 |
3 |
4 |
5 |
如表①,所取的2個(gè)整數(shù)之和可以為3,4,5,也就是從3到5的連續(xù)整數(shù),其中最小是3,最大是5,所以共有3種不同的結(jié)果.
(1)從1,2,3,4,5這5個(gè)整數(shù)中任取2個(gè)整數(shù),這2個(gè)整數(shù)之和共有
7
7
種不同的結(jié)果.
(2)從1,2,3,……,n(n為整數(shù),且n≥6)這n個(gè)整數(shù)中任取3個(gè)整數(shù),這3個(gè)整數(shù)之和共有
(3n-8)
(3n-8)
種不同的結(jié)果.
(3)歸納結(jié)論:從1,2,3,……,n(n為整數(shù),且n≥6)這n個(gè)整數(shù)中任取5個(gè)整數(shù),這5個(gè)整數(shù)之和共有
(5n-24)
(5n-24)
種不同的結(jié)果.
[問題解決]
從100張面值分別為1元、2元、3元、……、100元的獎(jiǎng)券中(面值為整數(shù)),一次任意抽取5張獎(jiǎng)券,共有
476
476
種不同的優(yōu)惠金額.
[問題拓展]
從3,4,5,……,n(n為整數(shù),且n≥6)這n-2個(gè)整數(shù)中任取5個(gè)整數(shù),使得取出的這些整數(shù)之和共有121種不同的結(jié)果,求n的值.(寫出解答過程)