(1)如圖1,在矩形ABCD中,AB:BC=3:2,點(diǎn)E、F分別在線段BC、CD上,且AE⊥BF,則BFAE=2323;
(2)如圖2,在矩形ABCD中,AB:BC=3:2,點(diǎn)F、G分別在邊AB、CD上,將矩形ABCD沿GF折疊,使點(diǎn)A落在BC邊上的點(diǎn)E處,得到四邊形EFGP,EP交CD于點(diǎn)H,連接AE交GF于點(diǎn)O.試探究GF與AE之間的位置關(guān)系與數(shù)量關(guān)系,并說明理由;
(3)在(2)的條件下,連接CP,若BEBF=34,GF=210,求線段BE和CP的長.

BF
AE
2
3
2
3
BE
BF
=
3
4
GF
=
2
10
【考點(diǎn)】四邊形綜合題.
【答案】
2
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:85引用:3難度:0.2
相似題
-
1.在一次數(shù)學(xué)研究學(xué)習(xí)中,小明將兩個(gè)全等的直角三角形紙片ABC和DEF拼在一起,使點(diǎn)A與點(diǎn)F重合,點(diǎn)C與點(diǎn)D重合(如圖1),其中∠ACB=∠DFE=90°,BC=EF=6cm,AC=DF=8cm,并進(jìn)行如下研究活動(dòng).
活動(dòng)一:將圖1中的紙片DEF沿AC方向平移,連接AE,BD(如圖2),當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)停止平移.
[思考]圖2中的四邊形ABDE是平行四邊形嗎?請(qǐng)說明理由.
[發(fā)現(xiàn)]當(dāng)紙片DEF平移到某一位置時(shí),小明發(fā)現(xiàn)四邊形ABDE為矩形(如圖3).求AF的長.
活動(dòng)二:在圖3中,取AD的中點(diǎn)O,再將紙片DEF繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)a度(0≤a≤90),連接OB,OE(如圖4).
[探究]當(dāng)EF平分∠AEO時(shí),探究OF與BD的數(shù)量關(guān)系,并說明理由.發(fā)布:2025/6/9 21:0:1組卷:144引用:2難度:0.2 -
2.在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng).將邊長為2的正方形ABCD與邊長為3的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現(xiàn)DG=BE且DG⊥BE,請(qǐng)你給出證明.
(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)△ADG的面積.發(fā)布:2025/6/9 22:0:2組卷:408引用:8難度:0.3 -
3.(1)問題背景
如圖甲,∠ADC=∠B=90°,DE⊥AB,垂足為E,且AD=CD,DE=5,求四邊形ABCD的面積.
小明發(fā)現(xiàn)四邊形ABCD的一組鄰邊AD=CD,這就為旋轉(zhuǎn)作了鋪墊.于是,小明同學(xué)有如下思考過程:
第一步:將△ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°;
第二步:利用∠A與∠DCB互補(bǔ),
證明F、C、B三點(diǎn)共線,
從而得到正方形DEBF;
進(jìn)而求得四邊形ABCD的面積.
(2)類比遷移
如圖乙,P為等邊△ABC外一點(diǎn),BP=1,CP=3,且∠BPC=120°,求四邊形ABPC的面積.
(3)拓展延伸
如圖丙,在五邊形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五邊形ABCDE的面積.發(fā)布:2025/6/9 22:30:2組卷:850引用:6難度:0.3