閱讀下面的情景對話,然后解答問題:
老師:我們將奇異三角形定義為兩邊平方和等于第三邊平方的2倍的三角形.
小華:等邊三角形一定是奇異三角形!
小明:那直角三角形是否存在奇異三角形呢?
【感知】
(1)根據“奇異三角形”的定義,小紅得出命題:“等邊三角形一定是奇異三角形”,請判斷小紅提出的命題是否正確,并填空 正確正確(填“正確”或“不正確”);
(2)若某三角形的三邊長分別是3、11、7,則△ABC是奇異三角形嗎?是是(填“是”或“不是”);
【思考】
(1)若Rt△ABC是奇異三角形,且其兩邊長分別為2、23,則第三邊的邊長為 2222;且此直角三角形的三邊之比為 1:2:31:2:3(請按從小到大排列);
(2)如圖1,在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
【運用】如圖2,在Rt△ABC中,∠ACB=90°,以AB為斜邊作等腰直角△ABD,點E是AC下方的一點,且滿足AE=AD,CE=CB.
(1)求證:△ACE是奇異三角形;
(2)當△ACE是直角三角形時,記△ABC的面積為S1,四邊形ACBD的面積為S2,則S1S2=23-3.23-3..
?
11
7
2
3
2
2
2
3
2
3
S
1
S
2
3
3
【考點】四邊形綜合題.
【答案】正確;是;2;1::;2-3.
2
2
3
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/11 11:0:2組卷:332引用:2難度:0.4
相似題
-
1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1465引用:7難度:0.3 -
2.如圖,點P是正方形ABCD內的一點,連接CP,將線段CP繞點C順時針旋轉90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.發(fā)布:2024/12/23 18:0:1組卷:2032引用:13難度:0.1 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數;
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結果)5發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
把好題分享給你的好友吧~~