試卷征集
加入會員
操作視頻

已知橢圓
C
x
2
a
2
+
y
2
b
2
=
1
a
b
0
的離心率
e
=
2
2
,且點(4,1)在橢圓C上.
(1)求橢圓C的方程;
(2)若經(jīng)過定點(0,-1)的直線l與橢圓C交于P,Q兩點,記橢圓的上頂點為M,當直線l的斜率變化時,求△MPQ面積的最大值.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/22 0:0:1組卷:402引用:4難度:0.4
相似題
  • 1.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    (a>b>0)的離心率為
    3
    2
    ,短軸長為2.
    (Ⅰ)求橢圓C的標準方程;
    (Ⅱ)若直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M,N,且線段MN的垂直平分線過定點(1,0),求實數(shù)k的取值范圍.

    發(fā)布:2024/6/27 10:35:59組卷:2180引用:4難度:0.4
  • 2.離心率為
    5
    3
    ,長軸長為
    2
    5
    且焦點在x軸上的橢圓的標準方程為(  )

    發(fā)布:2024/7/3 8:0:9組卷:53引用:2難度:0.7
  • 3.已知橢圓C2以橢圓C1
    x
    2
    4
    +y2=1的長軸為短軸,且與橢圓C1有相同的離心率,那么橢圓C2的標準方程為

    發(fā)布:2024/8/6 8:0:9組卷:21引用:1難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正