如圖,①是一個長為2m,寬為2n的長方形,沿圖中的虛線剪成四個完全一樣的小長方形,再按照圖②圍成一個較大的正方形.

(1)請用兩種方法表示圖②中陰影部分的面積(只需要表示,不必化簡);
(2)比較(1)中的兩種結果,你能得到怎樣的等量關系式?
(3)請你用(2)中得到的等量關系解決下列問題:如果m-n=4,mn=12,求(m+n)2的值.
【考點】完全平方公式的幾何背景.
【答案】(1)(m-n)2,(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)64.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:180引用:3難度:0.8
相似題
-
1.已知x2+4y2=13,xy=3,求x+2y的值,這個問題我們可以用邊長分別為x和y的兩種正方形組成一個圖形來解決,其中x>y,能較為簡單地解決這個問題的圖形是( )
發(fā)布:2025/6/22 15:30:1組卷:2384引用:20難度:0.7 -
2.如圖是用4個全等的長方形拼成的一個“回形”正方形,將圖中陰影部分面積用2種方法表示可得一個等式,這個等式為
發(fā)布:2025/6/23 19:0:1組卷:340難度:0.7 -
3.圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按圖2 的形狀拼成一個正方形.
(1)圖2的陰影部分的正方形的邊長是
(2)用兩種不同的方法求圖中陰影部分的面積.
【方法1】S陰影=
【方法2】S陰影=
(3)觀察圖2,寫出(a+b)2,(a-b)2,ab 這三個代數式之間的等量關系.
(4)根據(3)題中的等量關系,解決問題:若m+n=10,m-n=6,求mn的值.發(fā)布:2025/6/24 1:30:2組卷:1443難度:0.3