在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=12∠ACB,連接BD,BE,點F是BD的中點,連接CF.
(1)當∠CAB=45°時.
①如圖1,當頂點D在邊AC上時,請直接寫出∠EAB與∠CBA的數(shù)量關(guān)系是∠EAB=∠CBA∠EAB=∠CBA.線段BE與線段CF的數(shù)量關(guān)系是CF=12BECF=12BE;
②如圖2,當頂點D在邊AB上時,(1)中線段BE與線段CF的數(shù)量關(guān)系是否仍然成立?若成立,請給予證明,若不成立,請說明理由;
學生經(jīng)過討論,探究出以下解決問題的思路,僅供大家參考:
思路一:作等腰△ABC底邊上的高CM,并取BE的中點N,再利用三角形全等或相似有關(guān)知識來解決問題;
思路二:取DE的中點G,連接AG,CG,并把△CAG繞點C逆時針旋轉(zhuǎn)90°,再利用旋轉(zhuǎn)性質(zhì)、三角形全等或相似有關(guān)知識來解決問題.
(2)當∠CAB=30°時,如圖3,當頂點D在邊AC上時,寫出線段BE與線段CF的數(shù)量關(guān)系,并說明理由.
1
2
1
2
1
2
【考點】相似形綜合題.
【答案】∠EAB=∠CBA;CF=BE
1
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/31 11:0:12組卷:5880引用:5難度:0.1
相似題
-
1.如圖1,Rt△ABC中,AC=6cm,BC=8cm,點P以2cm/s的速度從A處沿AB方向勻速運動,點Q以1cm/s的速度從C處沿CA方向勻速運動.連接PQ,若設(shè)運動的時間為t(s)(0<t<5).解答下列問題:
(1)當t為何值時,△APQ與△ABC相似?
(2)設(shè)四邊形BCQP的面積為y,求出y與t的函數(shù)關(guān)系式,并求當t為何值時,y的值最小,寫出最小值;
(3)如圖2,將△APQ沿AP翻折,使點Q落在Q′處,連接AQ′,PQ′,若四邊形AQPQ′是平行四邊形,求t的值.發(fā)布:2024/12/2 8:0:1組卷:105引用:2難度:0.5 -
2.如圖,四邊形OABC是一張放在平面直角坐標系中的矩形紙片,點A在x軸上,點C在y軸上,將邊BC折疊,使點B落在邊OA的點D處.已知折痕CE=5
,且AE:AD=3:4.5
(1)判斷△OCD與△ADE是否相似?請說明理由;
(2)求直線CE與x軸交點P的坐標;
(3)是否存在過點D的直線l,使直線l、直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.發(fā)布:2024/12/23 11:0:1組卷:658引用:7難度:0.3 -
3.如圖1,已知△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/秒,連接PQ,設(shè)運動的時間為t秒(0≤t≤4)
(1)求△ABC的面積;
(2)當t為何值時,PQ∥BC;
(3)當t為何值時,△AQP面積為S=6cm2;
(4)如圖2,把△AQP翻折,得到四邊形AQPQ′能否為菱形?若能,求出菱形的周長;若不能,請說明理由.發(fā)布:2024/12/2 8:0:1組卷:91引用:1難度:0.5
把好題分享給你的好友吧~~