關(guān)于x的一元二次方程x2+(k-5)x+1-k=0,其中k為常數(shù).
(1)求證:無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)若原方程的一根大于3,另一根小于3,求k的最大整數(shù)值.
【考點(diǎn)】拋物線與x軸的交點(diǎn).
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:562引用:7難度:0.5
相似題
-
1.二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應(yīng)滿足( ?。?/h2>
發(fā)布:2024/12/23 14:30:1組卷:157引用:5難度:0.9 -
2.已知:二次函數(shù)y=-x2+x+6,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新函數(shù),當(dāng)直線y=m與新圖象有2個(gè)交點(diǎn)時(shí),m的取值范圍是( ?。?/h2>
發(fā)布:2024/12/23 12:0:2組卷:435引用:2難度:0.5 -
3.函數(shù)y=kx2-4x+4的圖象與x軸有交點(diǎn),則k的取值范圍是( )
發(fā)布:2025/1/2 5:0:3組卷:375引用:2難度:0.7