楊輝是我國南宋末年的一位杰出的數(shù)學家.他在《詳解九章算法》一書中,畫了一個由二項式(a+b)n(n=1,2,3,…)展開式的系數(shù)構成的三角形數(shù)陣,稱作“開方作法本源”,這就是著名的“楊輝三角”.在“楊輝三角”中,從第2行開始,除1以外,其他每一個數(shù)值都是它上面的兩個數(shù)值之和,每一行第k(k≤n,k∈N*)個數(shù)組成的數(shù)列稱為第k斜列.該三角形數(shù)陣前5行如圖所示,則該三角形數(shù)陣前2022行第k斜列與第k+1斜列各項之和最大時,k的值為( ?。?/h1>
【考點】二項式定理的應用.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:30引用:4難度:0.7
相似題
-
1.楊輝是我國古代數(shù)學史上一位著述豐富的數(shù)學家,著有《詳解九章算法》、《日用算法》和《楊輝算法》.楊輝三角的發(fā)現(xiàn)要比歐洲早500年左右,由此可見我國古代數(shù)學的成就是非常值得中華民族自豪的.楊輝三角本身包含了很多有趣的性質,利用這些性質,可以解決很多數(shù)學問題,如開方、數(shù)列等.
我們借助楊輝三角可以得到以下兩個數(shù)列的和.1+1+1+…+1=n;1+2+3+…+C1n-1=C2n
若楊輝三角中第三斜行的數(shù):1,3,6,10,15,…構成數(shù)列{an},則關于數(shù)列{an}敘述正確的是( ?。?/h2>發(fā)布:2024/11/27 6:30:2組卷:127引用:3難度:0.7 -
2.楊輝是中國南宋末年的一位杰出的數(shù)學家、教育家.楊輝三角是楊輝的一項重要研究成果,它的許多性質與組合數(shù)的性質有關,楊輝三角中蘊藏了許多規(guī)律,如圖是一個11階楊輝三角.
(1)第20行中從左到右的第4個數(shù)為 ;
(2)若第n行中從左到右第7個與第9個數(shù)的比為,則n的值為 .79發(fā)布:2024/12/29 4:30:2組卷:26引用:3難度:0.8 -
3.“楊輝三角”是中國古代數(shù)學杰出的研究成果之一.如圖所示,由楊輝三角的左腰上的各數(shù)出發(fā),引一組平行線,從上往下每條線上各數(shù)之和依次為1,1,2,3,5,8,13,……,則下列選項不正確的是( ?。?/h2>
發(fā)布:2024/12/29 12:0:2組卷:163引用:4難度:0.5
把好題分享給你的好友吧~~