請(qǐng)問(wèn)讀下列材料,并解答相應(yīng)的問(wèn)題
在Rt△ABC中、如果銳角A確定,那么角A的對(duì)邊與鄰邊的比值隨之確定,這個(gè)比叫做角A的正切,記作tanA,這是我們熟悉的三角函數(shù)中關(guān)于正切的定義.你不知道的是,世界上最早的正切函數(shù)表是由我國(guó)唐代一位叫做僧一行(683-727)的僧人在其所著《大衍歷》中首次創(chuàng)作的.他通過(guò)某地影長(zhǎng)的觀(guān)測(cè),求人陽(yáng)天頂距進(jìn)而求出該地各節(jié)氣初日影長(zhǎng)的方法,并為此編制了0度到80度的正切函數(shù)表.
我們摘取了部分正切函數(shù)表,如圖所示,當(dāng)角的度數(shù)是63.2度時(shí),我們查表可知其對(duì)應(yīng)的正切值為1.97,反之,如果已知一個(gè)角的正切值1.97,則這個(gè)角的度數(shù)是63.2度.
角度 | 正切值 |
63.2 | 1.97 |
63.3 | 1.98 |
63.4 | 1.99 |
63.5 | 2.00 |
63.6 | 2.01 |
63.7 | 2.02 |
①若AE=AD,∠DPE=90°,測(cè)得∠DEP=63.5°,則查表可知tan∠DEP=
2.00
2.00
,此時(shí)可求出線(xiàn)段PE=4
10
5
4
10
5
②若AE=3,∠DPE=90°,若此時(shí)點(diǎn)P恰好是AC中點(diǎn),請(qǐng)直接寫(xiě)出tan∠DEP=
2
2
.③若AE的值不是3,那么在變化過(guò)程中,tan∠DEP是否發(fā)生變化?請(qǐng)說(shuō)明理由.

【考點(diǎn)】四邊形綜合題.
【答案】2.00;;2
4
10
5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/17 10:0:1組卷:58引用:1難度:0.4
相似題
-
1.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當(dāng)AD與邊BC相交,點(diǎn)D與點(diǎn)F在直線(xiàn)AC的兩側(cè)時(shí),BD與CF的數(shù)量關(guān)系為
(2)將圖①中的菱形ADEF繞點(diǎn)A旋轉(zhuǎn)α(0°<α<180°),如圖②.
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時(shí),直接寫(xiě)出CE的長(zhǎng)度.發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1 -
2.探究問(wèn)題:
(1)方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿(mǎn)足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
證明:延長(zhǎng)CB到G,使BG=DE,連接AG,
∵四邊形ABCD為正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
變化:在圖①中,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫(xiě)出AM和AB的數(shù)量關(guān)系 ;
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.12
(3)問(wèn)題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿(mǎn)足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿(mǎn)足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫(xiě)出你的猜想(不必說(shuō)明理由).猜想:∠B與∠D滿(mǎn)足關(guān)系:.12發(fā)布:2025/6/24 19:0:1組卷:881引用:1難度:0.1 -
3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點(diǎn),F(xiàn)是正方形ABCD外一點(diǎn),連接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說(shuō)明理由.
(2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求BE:BF的值.
(3)在(2)的條件下,若正方形ABCD的邊長(zhǎng)為(3+3)cm,∠EDC=30°,求△BCF的面積.7發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5