(1)為了證明勾股定理,李明將兩個全等的直角三角形按如圖1所示擺放,使點A、E、D在同一條直線上,如圖1,請利用此圖證明勾股定理;
(2)如圖2,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點P從點A出發(fā),以每秒4cm的速度沿折線A-C-B運動,設(shè)運動時間為t秒(t>0),若點P在∠BAC的平分線上,求此時t的值.

【考點】勾股定理的證明;角平分線的性質(zhì).
【答案】(1)a2+b2=c2;
(2)t=.
(2)t=
8
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:476引用:7難度:0.7
相似題
-
1.魏晉時期,偉大數(shù)學(xué)家劉徽利用如圖通過“以盈補(bǔ)虛,出入相補(bǔ)”的方法,即“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類”證明了勾股定理,若圖中BF=2,CF=4,則AE的長為
發(fā)布:2025/5/23 19:0:2組卷:801引用:5難度:0.5 -
2.如圖,我國古代的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形密鋪構(gòu)成的大正方形,若小正方形的面積為1,大正方形的面積為13,則直角三角形較短的直角邊a與較長的直角邊b的比
的值是 .ab發(fā)布:2025/5/24 6:0:2組卷:481引用:5難度:0.6 -
3.公元三世紀(jì),我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”如圖所示,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形.如果大正方形的面積是125,小正方形面積是25,則tanθ的值為( ?。?/h2>
發(fā)布:2025/5/23 22:0:2組卷:95引用:2難度:0.6