拓展探究
問(wèn)題情境:“a2≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式,然后利用平方的非負(fù)性解決問(wèn)題,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,
∴(x+2)2+1≥1,∴x2+4x+5≥1.
(1)探究:x2-4x+5=(x-2-2)2+11;
(2)應(yīng)用:比較代數(shù)式:x2-1與2x-3的大小;
(3)拓展:求x2-4x+y2+2y+7的最小值.
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】-2;1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/13 4:0:2組卷:245引用:4難度:0.7
相似題
-
1.已知實(shí)數(shù)m,n滿足m-n2=1,則代數(shù)式m2+2n2+4m-1的最小值等于 .
發(fā)布:2025/6/14 0:30:2組卷:9531引用:63難度:0.7 -
2.王老師提出問(wèn)題:求代數(shù)式x2+4x+5的最小值.要求同學(xué)們運(yùn)用所學(xué)知識(shí)進(jìn)行解答.
同學(xué)們經(jīng)過(guò)探索、交流和討論,最后總結(jié)出如下解答方法;
解:x2+4x+5=x2+4x+22-22+5=(x+2)2+1,
∵(x+2)2≥0,∴(x+2)2+1≥1.
當(dāng)(x+2)2=0時(shí),(x+2)2+1的值最小,最小值是1.
∴x2+4x+5的最小值是1.
請(qǐng)你根據(jù)上述方法,解答下列各題:
(1)直接寫(xiě)出(x-1)2+3的最小值為 .
(2)求代數(shù)式x2+10x+32的最小值.
(3)你認(rèn)為代數(shù)式有最大值還是有最小值?求出該最大值或最小值.-13x2+2x+5
(4)若7x-x2+y-11=0,求x+y的最小值.發(fā)布:2025/6/13 18:0:2組卷:506引用:5難度:0.5 -
3.若p=a2+b2+2a+4b+2021,則p的最小值是( )
發(fā)布:2025/6/13 18:30:2組卷:141引用:2難度:0.6