王老師提出問題:求代數(shù)式x2+4x+5的最小值.要求同學(xué)們運(yùn)用所學(xué)知識(shí)進(jìn)行解答.
同學(xué)們經(jīng)過探索、交流和討論,最后總結(jié)出如下解答方法;
解:x2+4x+5=x2+4x+22-22+5=(x+2)2+1,
∵(x+2)2≥0,∴(x+2)2+1≥1.
當(dāng)(x+2)2=0時(shí),(x+2)2+1的值最小,最小值是1.
∴x2+4x+5的最小值是1.
請你根據(jù)上述方法,解答下列各題:
(1)直接寫出(x-1)2+3的最小值為 33.
(2)求代數(shù)式x2+10x+32的最小值.
(3)你認(rèn)為代數(shù)式-13x2+2x+5有最大值還是有最小值?求出該最大值或最小值.
(4)若7x-x2+y-11=0,求x+y的最小值.
-
1
3
x
2
+
2
x
+
5
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】3
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:504引用:5難度:0.5
相似題
-
1.關(guān)于x的二次三項(xiàng)式x2+10x+a有最小值-10,則常數(shù)a=.
發(fā)布:2025/6/2 23:30:2組卷:555引用:1難度:0.7 -
2.若x,y是等腰三角形的兩條邊,且滿足4x2+17y2-16xy-4y+4=0,求△ABC的周長.
發(fā)布:2025/6/3 13:0:1組卷:72引用:3難度:0.6 -
3.先閱讀下面的內(nèi)容,再解決問題,
例題:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:因?yàn)閙2+2mn+2n2-6n+9=0,
所以m2+2mn+n2+n2-6n+9=0.
所以(m+n)2+(n-3)2=0.
所以m+n=0,n-3=0.
所以m=-3,n=3.
問題:(1)若x2+4y2+2xy-12y+12=0,求xy的值;
(2)已知a,b,c是等腰△ABC的三邊長,且a,b滿足a2+b2=10a+8b-41,求△ABC的周長.發(fā)布:2025/6/3 0:0:1組卷:455引用:4難度:0.6