2021-2022學(xué)年北京十二中高二(下)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題共12小題,每小題5分,共60分.在每小題列出的四個選項中,選出符合題目要求的一項.
-
1.已知集合A={x|x<1},B={x|0≤x≤2},則A∩B=( )
組卷:94引用:3難度:0.8 -
2.已知實數(shù)a>b,則下列結(jié)論正確的是( )
組卷:91引用:4難度:0.7 -
3.下面給出的四個隨機(jī)變量中是離散型隨機(jī)變量的為( ?。?br />①高速公路上某收費(fèi)站在半小時內(nèi)經(jīng)過的車輛數(shù)X1;
②一個沿直線y=2x進(jìn)行隨機(jī)運(yùn)動的質(zhì)點離坐標(biāo)原點的距離X2;
③某同學(xué)射擊3次,命中的次數(shù)X3;
④某電子元件的壽命X4;組卷:191引用:2難度:0.9 -
4.已知數(shù)列{an}的首項為a1=1,且滿足
,則此數(shù)列的第3項是( ?。?/h2>an+1=2an+2n組卷:265引用:1難度:0.8 -
5.下列命題中,正確的是( ?。?/h2>
組卷:43引用:1難度:0.8 -
6.隨機(jī)變量X的分布列如表:其中a,b,c成等差數(shù)列,則P(|X|=1)=( )
X -1 0 1 P a b c 組卷:233引用:4難度:0.8 -
7.已知f(x)的導(dǎo)數(shù)存在,y=f(x)的圖象如圖所示,則在區(qū)間[a,b]上( ?。?/h2>
組卷:110引用:1難度:0.7
三、解答題共5小題,共60分.解答應(yīng)寫出文字說明,演算步驟或證明過程.
-
22.若函數(shù)
.f(x)=x+1ex
(1)求曲線y=f(x)在點(0,f(0))處的切線的方程;
(2)判斷方程f(x)=1解的個數(shù),并說明理由;
(3)當(dāng)a>0,設(shè),求g(x)的單調(diào)區(qū)間.g(x)=f(x)+12ax2組卷:177引用:1難度:0.4 -
23.已知集合A={α|α=(x1,x2,x3,x4),xi∈N,i=1,2,3,4}.對集合A中的任意元素α=(x1,x2,x3,x4),定義T(α)=(|x1-x2|,|x2-x3|,|x3-x4|,|x4-x1|),當(dāng)正整數(shù)n≥2時,定義Tn(α)=T(Tn-1(α))(約定T1(α)=T(α)).
(1)若α=(2,0,2,1),求T4(α);
(2)若α=(x1,x2,x3,x4)滿足,xi∈{0,1}(i=1,2,3,4)且T2(α)=(1,1,1,1),求α的所有可能結(jié)果;
(3)是否存在正整數(shù)n使得對任意α=(x1,x2,x3,x4)∈A(x1≥x2≥x4≥x3)都有Tn(α)=(0,0,0,0)?若存在,求出n的所有取值;若不存在,說明理由.組卷:37引用:1難度:0.4