2022年湘豫名校高考數(shù)學(xué)聯(lián)考試卷(理科)(4月份)
發(fā)布:2024/12/18 15:0:2
一、選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項符合題目要求
-
1.已知集合A=[2,4),B=[3,5],則(?RA)∩B=( ?。?/h2>
組卷:28引用:1難度:0.8 -
2.已知復(fù)數(shù)z=1-i,則
=( )|2z-iz|組卷:229引用:6難度:0.7 -
3.若數(shù)列
是等差數(shù)列,a1=1,a5=-{3an+2},則a2=( )53組卷:311引用:1難度:0.7 -
4.已知函數(shù)f(x)=sin2x+acos2x在
處取得極值,則函數(shù)g(x)=asin2x-cos2x+1的圖象( )x=π4組卷:86引用:2難度:0.5 -
5.已知某函數(shù)的圖象如圖所示,則該函數(shù)的解析式可能為( ?。?/h2>
組卷:89引用:2難度:0.7 -
6.已知O是坐標(biāo)原點.F是雙曲線
的右焦點,過雙曲線C的右頂點且垂直于x軸的直線與雙曲線C的一條漸近線交于A點,若以F為圓心的圓經(jīng)過點A,O,則雙曲線C的漸近線方程為( ?。?/h2>C:x2a2-y2b2=1(a>0,b>0)組卷:87引用:1難度:0.9 -
7.若
,則sin(2α+70°)=( ?。?/h2>sin10°=(1-3tan10°)?sin(10°-α)組卷:202引用:1難度:0.6
(二)選考題:共10分.請考生在第22~23題中任選一題作答,如果多做,則按所做的第一題計分.[選修4—4:坐標(biāo)系與參數(shù)方程]
-
22.在平面直角坐標(biāo)系xOy中.直線
(t為參數(shù),α為l的傾斜角.α∈[0,π).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C:ρ=5,直線l與圓C交于M、N兩點.l:x=3+tcosα,y=7+tsinα
(1)若直線l的斜率k=2,求弦MN的中點Q的直角坐標(biāo)與弦長|MN|的值;
(2)若點P(3,7),證明:對任意α,有|PM|?|PN|為定值.并求出這個定值.組卷:57引用:2難度:0.5
[選修4-5:不等式選講]
-
23.已知函數(shù)f(x)=|x-1|+2|x-2|+4|x-t|(t∈R).
(1)若函數(shù)f(x)在(3,+∞)上單調(diào)遞增,求實數(shù)t的取值范圍;
(2)若t>2,求函數(shù)f(x)的最小值.組卷:112引用:4難度:0.5