試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

滬教版高二(下)高考題單元試卷:第12章 圓錐曲線(08)

發(fā)布:2024/4/20 14:35:0

一、填空題(共4小題)

  • 菁優(yōu)網(wǎng)1.如圖,橢圓的中心為原點O,長軸在x軸上,離心率
    e
    =
    2
    2
    ,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
    (Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
    (Ⅱ)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

    組卷:652引用:7難度:0.1
  • 2.已知直線y=a交拋物線y=x2于A,B兩點,若該拋物線上存在點C,使得∠ACB為直角,則a的取值范圍為

    組卷:1030引用:25難度:0.5
  • 3.設(shè)F為拋物線C:y2=4x的焦點,過點P(-1,0)的直線l交拋物線C于兩點A,B,點Q為線段AB的中點,若|FQ|=2,則直線l的斜率等于

    組卷:1293引用:13難度:0.5
  • 4.橢圓Γ:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,焦距為2c,若直線y=
    3
    x
    +
    c
    與橢圓Γ的一個交點M滿足∠MF1F2=2∠MF2F1,則該橢圓的離心率等于

    組卷:2350引用:42難度:0.5

二、解答題(共26小題)

  • 5.已知橢圓C的兩個焦點分別為F1(-1,0)、F2(1,0),短軸的兩個端點分別為B1,B2
    (1)若△F1B1B2為等邊三角形,求橢圓C的方程;
    (2)若橢圓C的短軸長為2,過點F2的直線l與橢圓C相交于P,Q兩點,且
    F
    1
    P
    F
    1
    Q
    ,求直線l的方程.

    組卷:1376引用:42難度:0.1
  • 6.設(shè)橢圓E:
    x
    2
    a
    2
    +
    y
    2
    1
    -
    a
    2
    =
    1
    的焦點在x軸上
    (1)若橢圓E的焦距為1,求橢圓E的方程;
    (2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當(dāng)a變化時,點P在某定直線上.

    組卷:1408引用:12難度:0.1
  • 菁優(yōu)網(wǎng)7.如圖,在正方形OABC中,O為坐標(biāo)原點,點A的坐標(biāo)為(10,0),點C的坐標(biāo)為(0,10),分別將線段OA和AB十等分,分點分別記為A1,A2,…,A9和B1,B2,…,B9,連接OBi,過Ai作x軸的垂線與OBi,交于點Pi(i∈N*,1≤i≤9).
    (1)求證:點Pi(i∈N*,1≤i≤9)都在同一條拋物線上,并求拋物線E的方程;
    (2)過點C作直線l與拋物線E交于不同的兩點M,N,若△OCM與△OCN的面積之比為4:1,求直線l的方程.

    組卷:513引用:10難度:0.5
  • 8.已知拋物線C:y2=4x的焦點為F.
    (1)點A,P滿足
    AP
    =
    -
    2
    FA
    .當(dāng)點A在拋物線C上運動時,求動點P的軌跡方程;
    (2)在x軸上是否存在點Q,使得點Q關(guān)于直線y=2x的對稱點在拋物線C上?如果存在,求所有滿足條件的點Q的坐標(biāo);如果不存在,請說明理由.

    組卷:802引用:7難度:0.3
  • 9.平面直角坐標(biāo)系xOy中,已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的離心率為
    3
    2
    ,左、右焦點分別是F1,F(xiàn)2,以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點在橢圓C上.
    (Ⅰ)求橢圓C的方程;
    (Ⅱ)設(shè)橢圓E:
    x
    2
    4
    a
    2
    +
    y
    2
    4
    b
    2
    =1,P為橢圓C上任意一點,過點P的直線y=kx+m交橢圓E于A,B兩點,射線PO交橢圓E于點Q.
    (?。┣髚
    OQ
    OP
    |的值;
    (ⅱ)求△ABQ面積的最大值.

    組卷:5385引用:14難度:0.5
  • 菁優(yōu)網(wǎng)10.如圖,橢圓E:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)經(jīng)過點A(0,-1),且離心率為
    2
    2

    (Ⅰ)求橢圓E的方程;
    (Ⅱ)經(jīng)過點(1,1),且斜率為k的直線與橢圓E交于不同的兩點P,Q(均異于點A),證明:直線AP與AQ斜率之和為2.

    組卷:10053引用:36難度:0.5

二、解答題(共26小題)

  • 菁優(yōu)網(wǎng)29.已知O為坐標(biāo)原點,F(xiàn)為橢圓C:
    x
    2
    +
    y
    2
    2
    =
    1
    在y軸正半軸上的焦點,過F且斜率為-
    2
    的直線l與C交于A、B兩點,點P滿足
    OA
    +
    OB
    +
    OP
    =
    0

    (Ⅰ)證明:點P在C上;
    (Ⅱ)設(shè)點P關(guān)于點O的對稱點為Q,證明:A、P、B、Q四點在同一圓上.

    組卷:2518引用:11難度:0.1
  • 菁優(yōu)網(wǎng)30.如圖,橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    經(jīng)過點P(1,
    3
    2
    ),離心率e=
    1
    2
    ,直線l的方程為x=4.
    (1)求橢圓C的方程;
    (2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設(shè)直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,說明理由.

    組卷:4832引用:77難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正