設(shè)橢圓E:x2a2+y21-a2=1的焦點(diǎn)在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點(diǎn),P為橢圓E上第一象限內(nèi)的點(diǎn),直線F2P交y軸于點(diǎn)Q,并且F1P⊥F1Q,證明:當(dāng)a變化時(shí),點(diǎn)P在某定直線上.
x
2
a
2
+
y
2
1
-
a
2
=
1
【考點(diǎn)】直線與橢圓的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1409引用:12難度:0.1
相似題
-
1.已知橢圓E:
的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓于A,B兩點(diǎn),若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( ?。?/h2>x2a2+y2b2=1(a>b>0)發(fā)布:2024/12/3 9:0:2組卷:928引用:27難度:0.7 -
2.如果橢圓
的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是( )x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:451引用:3難度:0.6 -
3.已知
為橢圓A(-1,233),B(1,-233),P(x0,y0)上不同的三點(diǎn),直線l:x=2,直線PA交l于點(diǎn)M,直線PB交l于點(diǎn)N,若S△PAB=S△PMN,則x0=( ?。?/h2>C:x23+y22=1發(fā)布:2024/12/6 6:0:1組卷:231引用:6難度:0.5
把好題分享給你的好友吧~~