試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022-2023學年江蘇省蘇州市虎丘區(qū)胥江實驗中學八年級(上)期中數學試卷

發(fā)布:2024/9/17 8:0:8

一、選擇題(每小題2分,共20分)

  • 1.如圖,下列圖案是我國幾家銀行的標志,其中不是軸對稱圖形的是( ?。?/h2>

    組卷:205引用:12難度:0.9
  • 2.在實數4.
    ?
    2
    ?
    1
    ,π,
    22
    7
    ,|-3|,
    3
    64
    ,-
    8
    中,無理數有( ?。?/h2>

    組卷:73引用:3難度:0.9
  • 3.下列各組數中,不能組成直角三角形的是( ?。?/h2>

    組卷:315難度:0.9
  • 4.如果一個等腰三角形的一個角為30°,則這個三角形的頂角為( ?。?/h2>

    組卷:75引用:15難度:0.9
  • 5.如圖,矩形ABCD的邊AD長為2,AB長為1,點A在數軸上對應的數是-1,以A點為圓心,對角線AC長為半徑畫弧,交數軸于點E,則這個點E表示的實數是( ?。?br />菁優(yōu)網

    組卷:1901難度:0.9
  • 菁優(yōu)網6.如圖,在△ABC中,CD⊥AB于點D,BE⊥AC于點E,F(xiàn)為BC的中點,DE=5,BC=8,則△DEF的周長是( ?。?/h2>

    組卷:2865引用:18難度:0.7
  • 菁優(yōu)網7.如圖,已知∠AOB=60°,點P在OA邊上,OP=8cm,點M、N在邊OB上,PM=PN,若MN=2cm,則OM為(  )

    組卷:2069引用:15難度:0.5
  • 菁優(yōu)網8.如圖,在單位正方形組成的網格圖中標有AB、CD、EF、GH四條線段,其中能構成一個直角三角形三邊的線段是( ?。?/h2>

    組卷:2494引用:50難度:0.9
  • 菁優(yōu)網9.勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構成的,可以用其面積關系驗證勾股定理.圖2是由圖1放入矩形內得到的,∠BAC=90°,AB=3,AC=4,點D,E,F(xiàn),G,H,I都在矩形KLMJ的邊上,則矩形KLMJ的面積為( ?。?/h2>

    組卷:6781難度:0.9

三、解答題(本大題共9小題,共64分)

  • 菁優(yōu)網26.已知,如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE.
    (1)動點P從點B出發(fā),以每秒1個單位的速度沿BC-CD-DA向終點A運動,設點P運動的時間為t秒,求當t為何值時,△ABP和△DCE全等?
    (2)若動點P從點B出發(fā),以每秒1個單位的速度僅沿著BE向終點E運動,連接DP.設點P運動的時間為t秒,是否存在t,使△PDE為等腰三角形?若存在,請求出t的值;否則,說明理由.

    組卷:2244引用:5難度:0.1
  • 27.定義:如圖1,點M,N把線段AB分割成AM、MN和BN,若以AM、MN、BN為邊的三角形是一個直角三角形,則稱點M、N是線段AB的勾股分割點.
    菁優(yōu)網
    (1)已知點M、N是線段AB的勾股分割點,AM=2,MN=3,求BN的長:
    (2)如圖2,在Rt△ABC中,∠ACB=90°,AC=BC,點M,N在斜邊AB上,∠MCN=45°,求證:點M,N是線段AB的勾股分割點;
    (3)在(2)的問題中,∠ACM=15°,AM=1,求BM的長.

    組卷:137引用:2難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正