試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2022-2023學(xué)年河南省駐馬店市高一(下)期末數(shù)學(xué)試卷

發(fā)布:2024/8/12 1:0:1

一、單選題:本大題共8小題,每小題5分,共40分.在每個小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.如果點A在直線a上,而直線a又在平面α內(nèi),那么可以記作( ?。?/h2>

    組卷:44引用:4難度:0.9
  • 2.與sin2023°的值最接近的數(shù)是( ?。?/h2>

    組卷:77引用:2難度:0.8
  • 3.已知矩形ABCD的對角線相交于點O,則
    AO
    -
    BC
    =( ?。?/h2>

    組卷:261引用:2難度:0.8
  • 4.用斜二測畫法畫△ABC的直觀圖如圖所示,其中O′B′=B′C′=2,
    A
    B
    =
    A
    C
    =
    2
    ,則△ABC中BC邊上的中線長為( ?。?/h2>

    組卷:116引用:2難度:0.7
  • 5.在復(fù)平面內(nèi),角α的頂點為坐標(biāo)原點,始邊為實軸非負(fù)半軸,終邊經(jīng)過復(fù)數(shù)
    Z
    =
    1
    -
    3
    i
    所對應(yīng)的點,則cosα=( ?。?/h2>

    組卷:24引用:2難度:0.7
  • 6.我國人臉識別技術(shù)處于世界領(lǐng)先地位.所謂人臉識別,就是利用計算機(jī)檢測樣本之間的相似度,余弦距離是檢測相似度的常用方法.假設(shè)二維空間中有兩個點A(x1,y1),B(x2,y2),O為坐標(biāo)原點,余弦相似度Similarity為向量
    OA
    OB
    夾角的余弦值,記作cos(A,B),余弦距離為1-cos(A,B).已知P(cosα,sinα),Q(cosβ,sinβ),R(cosα,-sinα),若P、Q的余弦距離為
    1
    3
    ,
    Q
    ,
    R
    的余弦距離為
    1
    2
    ,則tanα?tanβ=(  )

    組卷:40引用:2難度:0.6
  • 7.直角梯形ABCD,滿足AB⊥AD,CD⊥AD,AB=2AD=2CD=2現(xiàn)將其沿AC折疊成三棱錐D-ABC,當(dāng)三棱錐D-ABC體積取最大值時其外接球的體積為( ?。?/h2>

    組卷:394引用:6難度:0.9

四、解答題:本大題共6小題,滿分70分.解答時要求寫出必要的文字說明、證明過程或推演步驟.

  • 21.如圖,直三棱柱ABC-A1B1C1中,D、E分別是棱BC、AB的中點,點F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
    (1)求證:C1E∥平面ADF;
    (2)若點M在棱BB1上,當(dāng)BM為何值時,平面CAM⊥平面ADF?

    組卷:684引用:19難度:0.5
  • 22.已知向量
    a
    =
    cosωx
    ,
    sinωx
    ω
    0
    ,
    b
    =
    1
    2
    3
    2
    ,
    f
    x
    =
    a
    ?
    b

    (1)當(dāng)
    x
    =
    π
    6
    時,函數(shù)f(x)取得最大值,求ω的最小值及此時f(x)的解析式;
    (2)現(xiàn)將函數(shù)f(x)的圖象沿x軸向左平移
    π
    3
    ω
    個單位,得到函數(shù)g(x)的圖象.已知A,B,C是函數(shù)f(x)與g(x)圖象上連續(xù)相鄰的三個交點,若△ABC是銳角三角形,求ω的取值范圍.

    組卷:65引用:4難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正