2023年云南省曲靖二中高考數(shù)學二模試卷
發(fā)布:2024/8/8 8:0:9
一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知a∈R,i為虛數(shù)單位,若
為實數(shù),則a=( ?。?/h2>a-i3+iA.-3 B. 13C.3 D. -13組卷:260引用:13難度:0.9 -
2.如圖所示的Venn圖中,A、B是非空集合,定義集合A?B為陰影部分表示的集合.若A={x|x=2n+1,n∈N,n≤4},B={2,3,4,5,6,7},則A?B=( ?。?/h2>
A.{2,4,6,1} B.{2,4,6,9} C.{2,3,4,5,6,7} D.{1,2,4,6,9} 組卷:289引用:7難度:0.7 -
3.已知隨機變量X~N(2,σ2),且P(X≤4)=0.84,則P(0<X≤4)=( ?。?/h2>
A.0.84 B.0.68 C.0.34 D.0.16 組卷:428引用:8難度:0.7 -
4.如圖,在正方體ABCD-A1B1C1D1中,異面直線A1D與D1C所成的角為( ?。?/h2>
A. π6B. π4C. π3D. π2組卷:645引用:12難度:0.7 -
5.已知等比數(shù)列{an}的公比為q(q>0且q≠1),若a6+8a1=a4+8a3,則q的值為( ?。?/h2>
A. 14B. 12C.2 D.4 組卷:239引用:4難度:0.7 -
6.已知函數(shù)
,(ω>0)的圖象在區(qū)間(0,2π)內至多存在3條對稱軸,則ω的取值范圍是( ?。?/h2>f(x)=2cos(ωx-π3)+1A. (0,53]B. (23,53]C. [76,53)D. [53,+∞)組卷:493引用:8難度:0.7 -
7.已知對于每一對正實數(shù)x,y,函數(shù)f(x)滿足:f(x)+f(y)=f(x+y)-xy-1,若f(1)=1,則滿足f(n)=n(n∈N*)的n的個數(shù)是( ?。?/h2>
A.1個 B.2個 C.3個 D.4個 組卷:202引用:6難度:0.6
四、解答題:(本大題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟)
-
21.已知雙曲線C上的所有點構成集合P={(x,y)|ax2-by2=1(a>0,b>0)}和集合Q={(x,y)|0<ax2-by2<1(a>0,b>0)},坐標平面內任意點N(x0,y0),直線l:ax0x-by0y=1稱為點N關于雙曲線C的“相關直線”.
(1)若N∈P,判斷直線l與雙曲線C的位置關系,并說明理由;
(2)若直線l與雙曲線C的一支有2個交點,求證:N∈Q;
(3)若點N∈Q,點M在直線l上,直線MN交雙曲線C于A,B,求證:.|MA||AN|=|MB||BN|組卷:194引用:6難度:0.3 -
22.已知函數(shù)f(x)=2ae-x-sinx+1,f'(x)是f(x)的導函數(shù),且f'(0)=0.
(Ⅰ)求實數(shù)a的值,并證明函數(shù)f(x)在x=0處取得極值;
(Ⅱ)證明f(x)在每一個區(qū)間[2kπ,2kπ+](k∈N)都有唯一零點.π2組卷:133引用:5難度:0.2