2014-2015學(xué)年遼寧省大連四十八中高二(上)第一次模塊檢測(cè)數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(本題共12小題,每小題4分,共48分.每小題只有一個(gè)選項(xiàng)符合題意)
-
1.數(shù)列-1,
,-85,157,…的一個(gè)通項(xiàng)公式是( )249組卷:166引用:32難度:0.9 -
2.已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于( ?。?/h2>
組卷:795引用:66難度:0.9 -
3.已知數(shù)列{an}的前n項(xiàng)和Sn=
,則a3=( ?。?/h2>n+1n+2組卷:289引用:10難度:0.9 -
4.等比數(shù)列{an}的前3項(xiàng)的和等于首項(xiàng)的3倍,則它的公比為( ?。?/h2>
組卷:104引用:10難度:0.9 -
5.已知數(shù)列{an},an=-2n2+λn,若該數(shù)列是遞減數(shù)列,則實(shí)數(shù)λ的取值范圍是( ?。?/h2>
組卷:310引用:4難度:0.9 -
6.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若
,則a6a5=911=( ?。?/h2>S11S9組卷:693引用:30難度:0.9
三、解答題(本大題共4小題,每小題9分,共36分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.)
-
19.數(shù)列{an}滿足a1=
,an-an-1=-23,n≥2且n∈N+.43n
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=log3,數(shù)列{an24}的前n項(xiàng)和是Tn,證明:Tn<1bn?bn+2.316組卷:98引用:2難度:0.5 -
20.數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,滿足關(guān)系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…)
(1)求證:數(shù)列{an}為等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f(),(n=2,3,4…),求bn1bn-1
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.組卷:38引用:6難度:0.1