2021-2022學(xué)年江蘇省連云港市海州區(qū)新海初級中學(xué)九年級(上)月考數(shù)學(xué)試卷(12月份)
發(fā)布:2024/8/28 16:0:9
一、選擇題(共8小題,每小題3分,滿分24分)
-
1.方程x2-4=0的根為( ?。?/h2>
組卷:143引用:6難度:0.6 -
2.已知圓O的半徑為5,同一平面內(nèi)有一點P,且OP=4,則點P與圓O的關(guān)系是( ?。?/h2>
組卷:384引用:8難度:0.5 -
3.若
,則a2=b3=( ?。?/h2>2a-ba+b組卷:21引用:2難度:0.5 -
4.如下表記錄了甲、乙、丙、丁四名跳高運(yùn)動員最近幾次選拔賽成績的平均數(shù)與方差:
甲 乙 丙 丁 平均數(shù)(cm) 180 180 185 185 方差 8.1 3.6 7.4 3.6 組卷:15引用:2難度:0.5 -
5.如圖,C,D是⊙O上直徑AB兩側(cè)的兩點,設(shè)∠ABC=25°,則∠BDC=( )
組卷:2059引用:42難度:0.7 -
6.筒車是我國古代發(fā)明的一種水利灌溉工具,明朝科學(xué)家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理,如圖1.筒車盛水桶的運(yùn)行軌道是以軸心O為圓心的圓,如圖2.已知圓心O在水面上方,且⊙O被水面截得的弦AB長為6米,⊙O半徑長為4米.若點C為運(yùn)行軌道的最低點,則點C到弦AB所在直線的距離是( ?。?br />
組卷:3166引用:40難度:0.7 -
7.二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分如圖所示.已知圖象經(jīng)過點(-1,0),其對稱軸為直線x=1.下列結(jié)論:①abc<0;②4a+2b+c<0,③3a+c=0;④關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根分別為-1,3.上述結(jié)論中正確結(jié)論的個數(shù)為( ?。?/h2>
組卷:21引用:2難度:0.5 -
8.正三角形ABC的邊長為2,動點P從點A出發(fā),以每秒1個單位長度的速度,沿A→B→C→A的方向運(yùn)動,到達(dá)點A時停止.設(shè)運(yùn)動時間為x秒,y=PC2,則y關(guān)于x的函數(shù)的圖象大致為( ?。?/h2>
組卷:24引用:6難度:0.9
二、填空題(每小題3分,共30分)
-
9.在一個不透明的盒子中,有五個完全相同的小球,把它們分別標(biāo)號為1,2,3,4,5,隨機(jī)摸出一個小球,摸出的小球標(biāo)號為偶數(shù)的概率是
組卷:1052引用:12難度:0.7
三、解答題(本大題共9小題,共96分.解答時應(yīng)寫出文字說明、證明過程或演算步驟)
-
26.如圖,在平面直角坐標(biāo)系中,給出如下定義:已知點A(2,3),點B(6,3),連接AB.如果線段AB上至少有一個點與點P的距離不大于1,那么稱點P是線段AB的“環(huán)繞點”.
(1)已知點C(3,1.5),D(4,3.5),E(1,3),則是線段AB的“環(huán)繞點”的點是 ;
(2)已知點P(m,n)在拋物線y=x2-2x+2上,且點P是線段AB的“環(huán)繞點”,求m的取值范圍;
(3)已知⊙M上有一點P是線段AB的“環(huán)繞點”,且點M(4,0),求⊙M的半徑r的取值范圍.組卷:18引用:2難度:0.5 -
27.如圖,在平面直角坐標(biāo)系中,四邊形ABCD為正方形,點A,B在x軸上,拋物線y=x2+bx+c經(jīng)過點B,D(-4,5)兩點,且與直線DC交于另一點E.
(1)求拋物線的解析式;
(2)F為拋物線對稱軸與x軸的交點,M為線段DE上一點,N為平面直角坐標(biāo)系中的一點,若存在以點D、F、M、N為頂點的四邊形是菱形.請直接寫出點N的坐標(biāo),不需要寫過程;
(3)P為y軸上一點,過點P作拋物線對稱軸的垂線,垂足為Q,連接OB、BP,探究EQ+PQ+PB是否存在最小值.若存在,請求出這個最小值及點Q的坐標(biāo),若不存在,請說明理由.組卷:321引用:4難度:0.4