試卷征集
加入會(huì)員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2022-2023學(xué)年黑龍江省齊齊哈爾市鐵鋒區(qū)八年級(jí)(下)期中數(shù)學(xué)試卷

發(fā)布:2024/7/4 8:0:9

一、選擇題(每小題3分,共30分)

  • 1.下列各式一定是二次根式的是( ?。?/h2>

    組卷:375引用:6難度:0.9
  • 2.下列各式中,運(yùn)算正確的是( ?。?/h2>

    組卷:141引用:9難度:0.8
  • 3.下列長(zhǎng)度的三條線段能構(gòu)成直角三角形的是( ?。?/h2>

    組卷:31引用:2難度:0.5
  • 4.下列條件中,不能判定四邊形ABCD為平行四邊形的是( ?。?/h2>

    組卷:315引用:11難度:0.6
  • 5.下列命題的逆命題是真命題的是( ?。?/h2>

    組卷:6引用:1難度:0.7
  • 6.已知1<p<2,化簡(jiǎn)
    1
    -
    p
    2
    +(
    2
    -
    p
    2=(  )

    組卷:1930引用:6難度:0.7
  • 菁優(yōu)網(wǎng)7.如圖△ABC中,AB=AC,BC=6,△DEF的周長(zhǎng)是11,AF⊥BC于F,BE⊥AC于點(diǎn)E,且點(diǎn)D是AB的中點(diǎn),則AF的長(zhǎng)為( ?。?/h2>

    組卷:251引用:1難度:0.5
  • 8.若順次連接四邊形ABCD各邊中點(diǎn)所得四邊形是菱形,則四邊形ABCD( ?。?/h2>

    組卷:27引用:2難度:0.5

三、解答題(滿分49分)

  • 23.綜合與實(shí)踐
    【課本再現(xiàn)】在一次課題學(xué)習(xí)活動(dòng)中,老師提出了如下問題:如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你探究AE與EF存在怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
    經(jīng)過探究,小明得出的結(jié)論是AE=EF.而要證明結(jié)論AE=EF,就需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),小明想到的方法是如圖2,取AB的中點(diǎn)M,連接EM,證明△AEM≌△EFC.從而得到AE=EF.
    (1)小明的證法中,證明△AEM≌△EFC的條件可以為

    A.邊邊邊 B.邊角邊 C.角邊角 D.斜邊直角邊
    【類比遷移】
    (2)如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,AE=EF是否仍然成立?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.
    (3)如圖4,如果點(diǎn)E是邊BC延長(zhǎng)線上的任意一點(diǎn),其他條件不變,AE=EF是否仍然成立?
    (填“是”或“否”,不需證明);
    【拓展應(yīng)用】
    (4)已知:四邊形ABCD是正方形,點(diǎn)E是直線BC上的一點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F,若AB=4,CE=2,則EF的長(zhǎng)為

    菁優(yōu)網(wǎng)

    組卷:214引用:4難度:0.5
  • 菁優(yōu)網(wǎng)24.綜合與探究
    如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別為(0,a)和(b,0),且a,b滿足
    b
    =
    a
    -
    8
    +
    8
    -
    a
    +
    4
    .將矩形OABC沿對(duì)角線AC所在的直線折疊,點(diǎn)B落在點(diǎn)D處,DC與y軸相交于點(diǎn)E.
    (1)a=
    ,b=
    ;
    (2)試證明△ADE≌△COE,并直接寫出點(diǎn)E的坐標(biāo);
    (3)若點(diǎn)F是線段AC上的一個(gè)動(dòng)點(diǎn),則EF+OF的最小值為
    ;
    (4)平面內(nèi)是否存在點(diǎn)M與點(diǎn)N使四邊形ACMN為正方形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

    組卷:65引用:2難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正