2022-2023學(xué)年湖北省孝感市云夢縣七年級(上)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、單選題
-
1.
( ?。?/h2>12的絕對值是組卷:164引用:9難度:0.9 -
2.如圖,由若干個小正方體組成的一個幾何體,從它的正面看得到的平面圖形是( ?。?/h2>
組卷:113引用:2難度:0.8 -
3.已知x=3是關(guān)于x的方程2x-a=4的解,則a的值是( ?。?/h2>
組卷:249引用:2難度:0.8 -
4.已知∠1與∠2互余,若∠2=30°,則∠1=( ?。?/h2>
組卷:232引用:7難度:0.8 -
5.關(guān)于單項式-xy2z3,下列說法正確的是( ?。?/h2>
組卷:101引用:1難度:0.8 -
6.下列運用等式的性質(zhì),變形正確的是( ?。?/h2>
組卷:99引用:2難度:0.8 -
7.如圖,C,D是線段AB上兩點,若AD=3,DB=7,且D是AC中點,則BC的長等于( ?。?/h2>
組卷:92引用:1難度:0.8 -
8.若規(guī)定“!”是一種數(shù)學(xué)運算符號,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,則
的值為( ?。?/h2>100!98!組卷:1245引用:17難度:0.7
三、解答題
-
23.綜合與實踐
問題情境:
數(shù)學(xué)活動課上,如圖1,老師拿一張長方形紙片折疊一角,得到折痕EF,同學(xué)們發(fā)現(xiàn)折痕有角平分線的作用.
問題解決:
(1)若∠EFA′=35°,則∠A′FB=;
實踐探究:
(2)希望小組受此問題的啟發(fā),將長方形紙片按圖2方式折疊,EF,F(xiàn)G為折痕,點A′,B′,F(xiàn)恰好在同一條直線上,求∠EFG的度數(shù);
拓展延伸:
(3)智慧小組將長方形紙片按圖3方式折疊,DE,CE為折痕,若∠A′EB′=15°,請直接寫出∠DEC的度數(shù).組卷:361引用:4難度:0.4 -
24.如圖,數(shù)軸上點A表示的數(shù)為a,點B表示的數(shù)為b,且滿足|a+8|+(4-b)2=0.
(1)若線段AB的中點為H,求點H表示的數(shù).
(2)若點P從A點出發(fā),以3個單位長度/秒的速度向右運動,到達B點后立即以2個單位長度/秒的速度返回A點;在點P從A點出發(fā)的同時,點Q從B點出發(fā),以1個單位長度/秒的速度向左運動,設(shè)運動時間為t秒.
①在點P到達B點之前,若P,Q兩點到原點O的距離相等,求t的值.
②在點P返回A點之前,若P,Q兩點間的距離等于3,求t的值.組卷:96引用:1難度:0.5