2022-2023學(xué)年山東省東營二十六中九年級(上)第一次質(zhì)檢數(shù)學(xué)試卷
發(fā)布:2024/12/9 5:0:1
一、選擇題(每題3分,滿分30分)
-
1.已知點B(-1,1)在反比例函數(shù)y=
的圖象上,則k的值是( )kx組卷:89引用:1難度:0.6 -
2.函數(shù)y=2x+1的圖象不經(jīng)過( ?。?/h2>
組卷:1781引用:33難度:0.9 -
3.若點A(-5,y1),B(1,y2),C(5,y3)都在反比例函數(shù)y=-
的圖象上,則y1,y2,y3的大小關(guān)系是( ?。?/h2>5x組卷:1921引用:24難度:0.6 -
4.拋物線的函數(shù)表達(dá)式為y=3(x-2)2+1,若將x軸向上平移2個單位長度,將y軸向左平移3個單位長度,則該拋物線在新的平面直角坐標(biāo)系中的函數(shù)表達(dá)式為( )
組卷:3809引用:41難度:0.6 -
5.數(shù)形結(jié)合是解決數(shù)學(xué)問題常用的思想方法.如圖,直線y=x+5和直線y=ax+b相交于點P,根據(jù)圖象可知,方程x+5=ax+b的解是( ?。?/h2>
組卷:4141引用:51難度:0.6 -
6.函數(shù)y=
和y=-kx+2(k≠0)在同一平面直角坐標(biāo)系中的大致圖象可能是( ?。?/h2>kx組卷:2561引用:16難度:0.6 -
7.關(guān)于二次函數(shù)y=x2+2x-8,下列說法正確的是( )
組卷:4100引用:34難度:0.6 -
8.在平面直角坐標(biāo)系中,O為坐標(biāo)原點.若直線y=x+3分別與x軸、直線y=-2x交于點A、B,則△AOB的面積為( ?。?/h2>
組卷:2007引用:7難度:0.7
三、解答題(滿分62分)
-
23.如圖,在Rt△ABC中,∠C=90°,∠A=45°,AC=2
.動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點P作PD⊥AC于點D(點P不與點A,B重合),作∠DPQ=45°,邊PQ交射線DC于點Q.設(shè)點P的運動時間為t秒.2
(1)線段DC的長為 (用含t的式子表示).
(2)當(dāng)點Q與點C重合時,求t的值.
(3)設(shè)△PDQ與△ABC重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系式.組卷:37引用:1難度:0.3 -
24.如圖,已知拋物線y=ax2+
x+4的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在入點右側(cè)),與y軸交于C點.32
(1)求拋物線的表達(dá)式和A,B兩點的坐標(biāo);
(2)若點P是拋物線上B,C兩點之間的一個動點(不與B,C重合),過點P作x軸的垂線交直線BC于點D,求PD的最大值以及此時點P的坐標(biāo).
(3)在(2)的條件下,在對稱軸上找一點Q,使得QP+QB的值最小,求出點Q的坐標(biāo).組卷:271引用:4難度:0.1