試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2023-2024學年甘肅省張掖市高臺一中高二(上)月考數(shù)學試卷(9月份)

發(fā)布:2024/9/6 0:0:9

一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.已知點P(1,2)在雙曲線
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =1(a>0,b>0)的漸近線上,則C的離心率是(  )

    組卷:142引用:4難度:0.7
  • 2.已知直線l1:x+2ay-1=0與直線l2:(3a-1)x-ay-1=0平行,則a=( ?。?/h2>

    組卷:49引用:3難度:0.7
  • 3.著名的天文學家、數(shù)學家約翰尼斯?開普勒(Johannes Kepler)發(fā)現(xiàn)了行星運動三大定律,其中開普勒第一定律又稱為軌道定律,即所有行星繞太陽運動的軌道都是橢圓,且太陽處在橢圓的一個焦點上.設地球繞太陽運動的軌道為橢圓C,在地球繞太陽運動的過程中,若地球與太陽的最遠距離與最近距離之比為λ,則C的離心率為( ?。?/h2>

    組卷:365引用:4難度:0.7
  • 4.設O為坐標原點,A,B是拋物線C:x2=2py(p>0)與圓E:x2+(y-8)2=r2(r>0)關于y軸對稱的兩個交點,若|AB|=|OA|=r,則p=(  )

    組卷:59引用:1難度:0.6
  • 5.拋物線y2=-4x上有一點P,P到橢圓
    x
    2
    16
    +
    y
    2
    15
    =
    1
    的左頂點的距離的最小值為( ?。?/h2>

    組卷:50引用:8難度:0.9
  • 6.已知拋物線x2=2py(p>0)的頂點為O,焦點為F,準線為直線l,點E在拋物線上.若E在直線l上的射影為Q,且Q在第四象限,
    4
    |
    OF
    |
    =
    3
    |
    FQ
    |
    ,則直線FE的傾斜角為( ?。?/h2>

    組卷:66引用:1難度:0.5
  • 7.已知A,B是雙曲線
    C
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    b
    0
    實軸的兩個端點,M,N是雙曲線上關于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2(k1k2≠0).若雙曲線的離心率為2,則
    |
    k
    1
    |
    2
    +
    |
    k
    2
    |
    的最小值為( ?。?/h2>

    組卷:203引用:2難度:0.5

四、解答題:本小題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.

  • 21.設橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左焦點為F,上頂點為B.已知橢圓的短軸長為4,離心率為
    5
    5

    (Ⅰ)求橢圓的方程;
    (Ⅱ)設點P在橢圓上,且異于橢圓的上、下頂點,點M為直線PB與x軸的交點,點N在y軸的負半軸上.若|ON|=|OF|(O為原點),且OP⊥MN,求直線PB的斜率.

    組卷:8038引用:17難度:0.5
  • 22.如圖,橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的離心率是
    1
    2
    ,短軸長為2
    3
    ,橢圓的左、右頂點為A1、A2.過橢圓與拋物線的公共焦點F的直線l與橢圓相交于A,B兩點,與拋物線E相交于P,Q兩點,點M為PQ的中點.
    (1)求橢圓C和拋物線E的方程;
    (2)記△ABA1的面積為S1,△MA2Q的面積為S2,若S1≥3S2,求直線l在y軸上截距的范圍.

    組卷:93引用:7難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據(jù),本網將在三個工作日內改正