試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2023-2024學(xué)年廣東省深圳外國語中學(xué)高二(上)月考數(shù)學(xué)試卷(10月份)

發(fā)布:2024/9/15 12:0:9

一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

  • 1.已知直線l1:2x+y-1=0,l2:4x-3y=0的傾斜角分別為α1,α2,則(  )

    組卷:79引用:2難度:0.8
  • 2.下列條件一定能確定一個平面的是( ?。?/h2>

    組卷:294引用:7難度:0.8
  • 3.函數(shù)f(x)=cosx,
    x
    [
    -
    π
    3
    ,
    π
    6
    ]
    的最小值為( ?。?/h2>

    組卷:363引用:7難度:0.7
  • 4.已知直線2x+y-3=0與直線4x-my-3=0平行,則它們之間的距離是( ?。?/h2>

    組卷:325引用:11難度:0.8
  • 5.在正四面體A-BCD中,其外接球的球心為O,則
    AO
    =( ?。?/h2>

    組卷:96引用:5難度:0.7
  • 6.如圖,在圓錐SO中,AB是底面圓O的直徑,SO=AB=4,AC=BC,D為SO的中點(diǎn),N為AD的中點(diǎn),則點(diǎn)N到平面SBC的距離為( ?。?/h2>

    組卷:61引用:4難度:0.6
  • 7.如圖,在三棱柱ABC-A1B1C1中,M為A1C1的中點(diǎn),N為側(cè)面BCC1B1上的一點(diǎn),且MN∥平面ABC1,若點(diǎn)N的軌跡長度為2,則( ?。?/h2>

    組卷:276引用:7難度:0.6

四、解答題:本題共6小題,共70分.解答應(yīng)寫出必要的文字說明、證明過程及演算步驟.

  • 21.已知直線l:(2m+1)x-(3+m)y+m-7=0.
    (1)m為何值時,點(diǎn)Q(3,4)到直線l的距離最大?并求出最大值;
    (2)若直線l分別與x軸,y軸的負(fù)半軸交于A,B兩點(diǎn),求△AOB(O為坐標(biāo)原點(diǎn))面積的最小值及此時直線l的方程.

    組卷:343引用:15難度:0.7
  • 22.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=AA1,D為A1B1的中點(diǎn),G為AA1的中點(diǎn),E為C1D的中點(diǎn),BF=3AF,點(diǎn)P為線段BC1上的動點(diǎn)(不包括線段BC1的端點(diǎn)).
    (1)若EP∥平面CFG,請確定點(diǎn)P的位置;
    (2)求直線CP與平面CFG所成角的正弦值的最大值.

    組卷:96引用:8難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正