試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2023-2024學年黑龍江省牡丹江一中高二(上)期中數學試卷

發(fā)布:2024/10/2 16:0:1

一、單選題(本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)

  • 1.圓心為(0,4),且過點(3,0)的圓的方程為( ?。?/h2>

    組卷:40難度:0.9
  • 2.拋物線x2=16y的焦點坐標為( ?。?/h2>

    組卷:54引用:2難度:0.7
  • 3.如果雙曲線
    x
    2
    4
    -
    y
    2
    12
    =1上一點P到它的右焦點的距離是8,那么點P到它的左焦點的距離是(  )

    組卷:269引用:5難度:0.8
  • 4.設直線l的方程為x-ysinθ+2=0,則直線l的傾斜角α的范圍是( ?。?/h2>

    組卷:754引用:28難度:0.7
  • 5.已知直線l:y=kx與圓C:x2+(y-2)2=4交于A,B兩點,若|AB|=2
    3
    ,則k=(  )

    組卷:264引用:4難度:0.7
  • 6.已知雙曲線C:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =1(a>0,b>0)的右焦點為F,B為虛軸上端點,M是BF中點,O為坐標原點,OM交雙曲線右支于N,若FN垂直于x軸,則雙曲線C的離心率為( ?。?/h2>

    組卷:251引用:5難度:0.5
  • 7.已知拋物線的方程為y2=4x,過其焦點F的直線交拋物線于A,B兩點,若
    AF
    =
    3
    FB
    ,|AB|=( ?。?/h2>

    組卷:138難度:0.6

四、解答題(本題共6小題,共70分,其中第17題10分,其它每題12分,解答應寫出文字說明、證明過程或演算步驟.)

  • 21.已知雙曲線C:
    x
    2
    2
    -
    y
    2
    b
    2
    =1(b>0)一個焦點F到漸近線的距離為
    2

    (1)求雙曲線C的方程;
    (2)過點(2,0)的直線l與雙曲線C的右支交于A,B兩點,在x軸上是否存在點N,使得
    NA
    ?
    NB
    為定值?如果存在,求出點N的坐標及該定值;如果不存在,請說明理由.

    組卷:124引用:4難度:0.5
  • 22.橢圓E:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的離心率是
    2
    2
    ,點M(
    2
    ,1)是橢圓E上一點,過點P(0,1)的動直線l與橢圓相交于A,B兩點.
    (1)求橢圓E的方程;
    (2)求△AOB面積的最大值;
    (3)在平面直角坐標系xOy中,是否存在與點P不同的定點Q,使
    |
    QA
    |
    |
    QB
    |
    =
    |
    PA
    |
    |
    PB
    |
    恒成立?存在,求出點Q的坐標;若不存在,請說明理由.

    組卷:134引用:5難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正