在平面直角坐標系中,拋物線y=x2-2x+c(c為常數(shù)).
(1)當c=-3時,求拋物線y=x2-2x+c的對稱軸和頂點坐標;
(2)若拋物線與x軸有兩個交點,自左向右分別為點A.B,且OA=12OB,求拋物線的解析式;
(3)當-1<x<0時,拋物線與x軸有且只有一個公共點,直接寫出c的取值范圍.
1
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:87引用:1難度:0.5
相似題
-
1.二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應(yīng)滿足( ?。?/h2>
發(fā)布:2024/12/23 14:30:1組卷:157引用:5難度:0.9 -
2.已知:二次函數(shù)y=-x2+x+6,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù),當直線y=m與新圖象有2個交點時,m的取值范圍是( ?。?/h2>
發(fā)布:2024/12/23 12:0:2組卷:434引用:2難度:0.5 -
3.函數(shù)y=kx2-4x+4的圖象與x軸有交點,則k的取值范圍是( ?。?/h2>
發(fā)布:2025/1/2 5:0:3組卷:375引用:2難度:0.7