我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如30=7+23.在不超過(guò)30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于30的概率是( ?。?/h1>
【考點(diǎn)】古典概型及其概率計(jì)算公式.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/26 8:0:9組卷:4419引用:27難度:0.7
相似題
-
1.用0,1,2三個(gè)數(shù)字組成的沒(méi)有重復(fù)數(shù)字的三位數(shù)中,其中三位數(shù)為偶數(shù)的概率是( ?。?/h2>
發(fā)布:2024/12/24 3:30:3組卷:11引用:1難度:0.7 -
2.投擲兩顆六個(gè)面上分別刻有1到6的點(diǎn)數(shù)的均勻的骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)
為虛數(shù)的概率為( )m+nin+mi發(fā)布:2024/12/20 17:0:3組卷:87引用:1難度:0.7 -
3.甲、乙兩人玩一個(gè)游戲,規(guī)則如下:一個(gè)袋子中有4個(gè)大小和質(zhì)地完全相同的小球,其中2個(gè)紅球,2個(gè)白球,甲采取不放回方式從中依次隨機(jī)地取出2個(gè)球,然后讓乙猜,若乙地猜測(cè)與摸出的球特征相符,則乙獲勝,否則甲獲勝,一輪游戲結(jié)束,然后進(jìn)行下一輪(每輪游戲都由甲摸球),乙所要猜的方案從以下兩種猜法中選擇一種.
猜法一:猜“第二次取出的球是紅球”;
猜法二:猜“兩次取出球的顏色不同”.
請(qǐng)回答
(1)如果你是乙,為了盡可能獲勝,你將選擇哪種猜法,并說(shuō)明理由;
(2)假定每輪游戲結(jié)果相互獨(dú)立,規(guī)定有人首先獲勝兩次則為游戲獲勝方,且整個(gè)游戲停止,若乙按照(1)中的選擇猜法進(jìn)行游戲,求乙獲得游戲勝利的概率.發(fā)布:2024/12/20 0:30:1組卷:168引用:3難度:0.7
把好題分享給你的好友吧~~