試卷征集
加入會員
操作視頻

將線段AB繞點A逆時針旋轉(zhuǎn)60°得到線段AC,繼續(xù)旋轉(zhuǎn)α(0°<α<120°)得到線段AD,連接CD.
(1)連接BD.
①如圖①,若α=80°,則∠BDC的度數(shù)為
30°
30°
;
②在第二次旋轉(zhuǎn)過程中,請?zhí)骄俊螧DC的大小是否改變.若不變,求出∠BDC的度數(shù);若改變,請說明理由.
(2)如圖②.以AB為斜邊作Rt△ABE,使得∠B=∠ACD,連接CE,DE.且CE⊥DE.試猜想線段AB,CD之間的數(shù)量關(guān)系,寫出結(jié)論并給予證明.

【考點】幾何變換綜合題
【答案】30°
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/30 8:0:9組卷:463引用:5難度:0.2
相似題
  • 1.如圖①,在△ABC與△ADE中,AB=AC,AD=AE.

    (1)BD與CE的數(shù)量關(guān)系是:BD
    CE.
    (2)把圖①中的△ABC繞點A旋轉(zhuǎn)一定的角度,得到如圖②所示的圖形.
    ①求證:BD=CE.
    ②若延長DB交EC于點F,則∠DFE與∠DAE的數(shù)量關(guān)系是什么?并說明理由.
    (3)若AD=8,AB=5,把圖①中的△ABC繞點A順時針旋轉(zhuǎn)α(0°<α≤360°),直接寫出BD長度的取值范圍.

    發(fā)布:2025/6/16 18:0:3組卷:402引用:3難度:0.4
  • 2.閱讀下面材料,完成(1)~(3)題.
    數(shù)學課上,老師出示了這樣一道題:
    如圖1,△ABC中,AC=BC=a,∠ACB=90°,點D在AB上,且AD=kAB(其中0<k<
    1
    2
    ),直線CD繞點D順時針旋轉(zhuǎn)90°與直線CB繞點B逆時針旋轉(zhuǎn)90°后相交于點E,探究線段DC、DE的數(shù)量關(guān)系,并證明.
    同學們經(jīng)過思考后,交流了自己的想法:
    小明:“通過觀察和度量,發(fā)現(xiàn)DC與DE相等”;
    小偉:“通過構(gòu)造全等三角形,經(jīng)過進一步推理,可以得到DC與DE相等”
    小強:“通過進一步的推理計算,可以得到BE與BC的數(shù)量關(guān)系”
    老師:“保留原題條件,連接CE交AB于點O.如果給出BO與DO的數(shù)量關(guān)系,那么可以求出CO?EO的值”

    (1)在圖1中將圖補充完整,并證明DC=DE;
    (2)直接寫出線段BE與BC的數(shù)量關(guān)系
    (用含k的代數(shù)式表示);
    (3)在圖2中將圖補充完整,若BO=
    5
    13
    DO,求CO?EO的值(用含a的代數(shù)式表示).

    發(fā)布:2025/6/16 18:30:2組卷:538引用:2難度:0.2
  • 3.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
    (1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是
    ,位置關(guān)系是
    ;
    (2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
    (3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.

    發(fā)布:2025/6/16 20:30:1組卷:7188引用:10難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正