菁于教,優(yōu)于學(xué)
旗下產(chǎn)品
校本題庫
菁優(yōu)備課
開放平臺
菁優(yōu)測評
菁優(yōu)公式
小優(yōu)同學(xué)
菁優(yōu)App
數(shù)字備考
充值服務(wù)
試卷征集
申請校本題庫
智能組卷
錯題庫
五大核心功能
組卷功能
資源共享
在線作業(yè)
在線測評
試卷加工
游客模式
登錄
試題
試題
試卷
課件
試卷征集
加入會員
操作視頻
高中數(shù)學(xué)
小學(xué)
數(shù)學(xué)
語文
英語
奧數(shù)
科學(xué)
道德與法治
初中
數(shù)學(xué)
物理
化學(xué)
生物
地理
語文
英語
道德與法治
歷史
科學(xué)
信息技術(shù)
高中
數(shù)學(xué)
物理
化學(xué)
生物
地理
語文
英語
政治
歷史
信息
通用
中職
數(shù)學(xué)
語文
英語
推薦
章節(jié)挑題
知識點挑題
智能挑題
收藏挑題
試卷中心
匯編專輯
細(xì)目表組卷
組卷圈
當(dāng)前位置:
2023-2024學(xué)年上海交大附中高二(上)期中數(shù)學(xué)試卷
>
試題詳情
設(shè)數(shù)集S滿足:①任意x∈S,有x≥0;②對任意x,y∈S(x,y可以取相同值),有x+y∈S或|x-y|∈S,則稱數(shù)集S具有性質(zhì)P.
(1)判斷數(shù)集A={0,1,3,6}和B={0,3,6}是否具有性質(zhì)P,并說明理由;
(2)若數(shù)集B={a
1
,a
2
,…,a
n
}且a
i
<a
i+1
(i=1,2,…,n-1)具有性質(zhì)P.
(i)當(dāng)n=4時,判斷a
1
,a
2
,a
3
,a
4
是否一定構(gòu)成等差數(shù)列,說明理由;
(ⅱ)若n≥100,數(shù)集B中的每個元素均為自然數(shù)且a
n
=2023,求數(shù)集B中所有元素的和的所有可能值.
【考點】
數(shù)列的應(yīng)用
;
元素與集合關(guān)系的判斷
.
【答案】
見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
當(dāng)前模式為游客模式,
立即登錄
查看試卷全部內(nèi)容及下載
發(fā)布:2024/10/17 21:0:2
組卷:21
引用:1
難度:0.2
相似題
1.
我國古代數(shù)學(xué)名著《孫子算經(jīng)》載有一道數(shù)學(xué)問題:“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩二,七七數(shù)之剩二,問物幾何?”根據(jù)這一數(shù)學(xué)思想,所有被3除余2的整數(shù)從小到大組成數(shù)列{a
n
},所有被5除余2的正整數(shù)從小到大組成數(shù)列{b
n
},把數(shù){a
n
}與{b
n
}的公共項從小到大得到數(shù)列{c
n
},則下列說法正確的是( )
A.a(chǎn)
1
+b
2
=c
2
B.b
8
-a
2
=c
4
C.b
22
=c
8
D.a(chǎn)
6
b
2
=c
9
發(fā)布:2024/10/26 17:0:2
組卷:126
引用:2
難度:0.5
解析
2.
我國古代數(shù)學(xué)專著《孫子算法》中有“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”如果此物數(shù)量在100至200之間,那么這個數(shù)
.
發(fā)布:2024/10/26 17:0:2
組卷:83
引用:2
難度:0.5
解析
3.
對于數(shù)列{a
n
}定義△a
i
=a
i+1
-a
i
為{a
n
}的差數(shù)列,△
2
a
i
=△a
i+1
-△a
i
為{a
n
}的累次差數(shù)列.如果{a
n
}的差數(shù)列滿足|△a
i
|≠|(zhì)△a
j
|,(?i,j∈N
*
,i≠j),則稱{a
n
}是“絕對差異數(shù)列”;如果{a
n
}的累次差數(shù)列滿足|△
2
a
i
|=|△
2
a
j
|,(?i,j∈N
*
),則稱{a
n
}是“累差不變數(shù)列”.
(1)設(shè)數(shù)列A
1
:2,4,8,10,14,16;A
2
:6,1,5,2,4,3,判斷數(shù)列A
1
和數(shù)列A
2
是否為“絕對差異數(shù)列”或“累差不變數(shù)列”,直接寫出你的結(jié)論;
(2)若無窮數(shù)列{a
n
}既是“絕對差異數(shù)列”又是“累差不變數(shù)列”,且{a
n
}的前兩項a
1
=0,a
2
=a,|△
2
a
i
|=d(d為大于0的常數(shù)),求數(shù)列{a
n
}的通項公式;
(3)已知數(shù)列B:b
1
,b
2
…,b
2n-1
,b
2n
是“絕對差異數(shù)列”,且{b
1
,b
2
…,b
2n
}={1,2,?,2n},證明:b
1
-b
2n
=n的充要條件是{b
2
,b
4
…,b
2n
}={1,2,?,n}.
發(fā)布:2024/10/23 1:0:2
組卷:110
引用:1
難度:0.1
解析
把好題分享給你的好友吧~~
商務(wù)合作
服務(wù)條款
走進(jìn)菁優(yōu)
幫助中心
兼職招聘
意見反饋
深圳市菁優(yōu)智慧教育股份有限公司
粵ICP備10006842號
公網(wǎng)安備44030502001846號
?2010-2024 jyeoo.com 版權(quán)所有
深圳市市場監(jiān)管
主體身份認(rèn)證
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2 |
隱私協(xié)議
第三方SDK
用戶服務(wù)條款
廣播電視節(jié)目制作經(jīng)營許可證
出版物經(jīng)營許可證
網(wǎng)站地圖
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正