某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動(dòng)中,研究三角形和正方形的性質(zhì)時(shí),做了如下探究:
在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為:垂直垂直,
②BC,DC,CF之間的數(shù)量關(guān)系為:BC=CF+CDBC=CF+CD;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),(1)中的①,②結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),延長BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=14BC,請直接寫出GE的長.

1
4
【考點(diǎn)】四邊形綜合題.
【答案】垂直;BC=CF+CD
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:817引用:4難度:0.1
相似題
-
1.如圖,△AMN是邊長為2的等邊三角形,以AN,AM所在直線為邊的平行四邊形ABCD交MN于點(diǎn)E、F,且∠EAF=30°.
(1)當(dāng)F、M重合時(shí),求AD的長;
(2)當(dāng)NE、FM滿足什么條件時(shí),能使;32(NE+FM)=EF
(3)在(2)的條件下,求證:四邊形ABCD是菱形.發(fā)布:2025/5/26 2:30:2組卷:150引用:2難度:0.1 -
2.【探究發(fā)現(xiàn)】(1)如圖1,在四邊形ABCD中,對角線AC⊥BD,垂足是O,求證:AB2+CD2=AD2+BC2.
【拓展遷移】(2)如圖2,以三角形ABC的邊AB、AC為邊向外作正方形ABDE和正方形ACFG,求證:CE⊥BG.
(3)如圖3,在(2)小題條件不變的情況下,連接GE,若∠EGA=90°,GE=6,AG=8,求BC的長.發(fā)布:2025/5/26 2:30:2組卷:957引用:6難度:0.3 -
3.問題情境:
在數(shù)學(xué)課上,老師給出了這樣一道題:如圖1,在△ABC中,AB=AC=6,∠BAC=30°,求BC的長.
探究發(fā)現(xiàn):
(1)如圖2,勤奮小組經(jīng)過思考后發(fā)現(xiàn):把△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ADE,連接BD,BE,利用直角三角形的性質(zhì)可求BC的長,其解法如下:
過點(diǎn)B作BH⊥DE交DE的延長線于點(diǎn)H,則BC=DE=DH-HE.
△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ADE,AB=AC=6,∠BAC=30°∴……
請你根據(jù)勤奮小組的思路,完成求解過程.
拓展延伸:
(2)如圖3,縝密小組的同學(xué)在勤奮小組的啟發(fā)下,把△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°后得到△ADE,連接BD,CE交于點(diǎn)F,交AB于點(diǎn)G,請你判斷四邊形ADFC的形狀并證明;
(3)奇異小組的同學(xué)把圖3中的△BGF繞點(diǎn)B順時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,連接AF,發(fā)現(xiàn)AF的長度不斷變化,直接寫出AF的最大值和最小值.發(fā)布:2025/5/26 3:0:2組卷:83引用:1難度:0.3
相關(guān)試卷